{"title":"低强度脉冲超声对恶性黑色素瘤干细胞凋亡和自噬的时间依赖性影响","authors":"Omer Dikici, Berrin Ozdil, Taha Kadir Yesin, Aylin Dikici, Yasemin Adalı, Huseyin Aktug","doi":"10.1111/jcmm.70687","DOIUrl":null,"url":null,"abstract":"<p>Cancer stem cells (CSCs) in malignant melanoma contribute to therapeutic resistance and tumour recurrence. While low-intensity pulsed ultrasound (LIPUS) has been proposed as a non-invasive strategy to induce cell death, its effects on CSC-specific apoptotic and autophagic responses remain unclear. This study aimed to explore the time-dependent effects of LIPUS on apoptosis and autophagy in CD133+ melanoma CSCs and CD133− non-stem melanoma cells. Human melanoma cells (CHL-1) were sorted via FACS into CD133+ and CD133− populations. Cells were exposed to LIPUS (1 MHz, 20% duty cycle, 1 W/cm<sup>2</sup>) for 1, 5, and 10 min. Protein expression levels of Caspase-3, Caspase-8, mTOR, and LC3 were evaluated via immunofluorescence and quantified by image-based analysis. Both cell populations showed significant increases in Casp3, Casp8, mTOR, and LC3 intensities following LIPUS application. Notably, CD133+ cells exhibited delayed but sustained increases in Casp3 and LC3 expression, while CD133− cells responded more rapidly. mTOR activity demonstrated distinct temporal dynamics between the two groups, suggesting differential modulation of autophagy-related pathways. LIPUS triggers temporally distinct apoptotic and autophagic responses in melanoma CSCs and non-stem cancer cells. These findings suggest a potential therapeutic avenue to selectively disrupt CSC survival mechanisms using mechanical stimulation.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70687","citationCount":"0","resultStr":"{\"title\":\"Time-Dependent Effects of Low-Intensity Pulsed Ultrasound on Apoptosis and Autophagy in Malignant Melanoma Stem Cells\",\"authors\":\"Omer Dikici, Berrin Ozdil, Taha Kadir Yesin, Aylin Dikici, Yasemin Adalı, Huseyin Aktug\",\"doi\":\"10.1111/jcmm.70687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer stem cells (CSCs) in malignant melanoma contribute to therapeutic resistance and tumour recurrence. While low-intensity pulsed ultrasound (LIPUS) has been proposed as a non-invasive strategy to induce cell death, its effects on CSC-specific apoptotic and autophagic responses remain unclear. This study aimed to explore the time-dependent effects of LIPUS on apoptosis and autophagy in CD133+ melanoma CSCs and CD133− non-stem melanoma cells. Human melanoma cells (CHL-1) were sorted via FACS into CD133+ and CD133− populations. Cells were exposed to LIPUS (1 MHz, 20% duty cycle, 1 W/cm<sup>2</sup>) for 1, 5, and 10 min. Protein expression levels of Caspase-3, Caspase-8, mTOR, and LC3 were evaluated via immunofluorescence and quantified by image-based analysis. Both cell populations showed significant increases in Casp3, Casp8, mTOR, and LC3 intensities following LIPUS application. Notably, CD133+ cells exhibited delayed but sustained increases in Casp3 and LC3 expression, while CD133− cells responded more rapidly. mTOR activity demonstrated distinct temporal dynamics between the two groups, suggesting differential modulation of autophagy-related pathways. LIPUS triggers temporally distinct apoptotic and autophagic responses in melanoma CSCs and non-stem cancer cells. These findings suggest a potential therapeutic avenue to selectively disrupt CSC survival mechanisms using mechanical stimulation.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 12\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70687\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-Dependent Effects of Low-Intensity Pulsed Ultrasound on Apoptosis and Autophagy in Malignant Melanoma Stem Cells
Cancer stem cells (CSCs) in malignant melanoma contribute to therapeutic resistance and tumour recurrence. While low-intensity pulsed ultrasound (LIPUS) has been proposed as a non-invasive strategy to induce cell death, its effects on CSC-specific apoptotic and autophagic responses remain unclear. This study aimed to explore the time-dependent effects of LIPUS on apoptosis and autophagy in CD133+ melanoma CSCs and CD133− non-stem melanoma cells. Human melanoma cells (CHL-1) were sorted via FACS into CD133+ and CD133− populations. Cells were exposed to LIPUS (1 MHz, 20% duty cycle, 1 W/cm2) for 1, 5, and 10 min. Protein expression levels of Caspase-3, Caspase-8, mTOR, and LC3 were evaluated via immunofluorescence and quantified by image-based analysis. Both cell populations showed significant increases in Casp3, Casp8, mTOR, and LC3 intensities following LIPUS application. Notably, CD133+ cells exhibited delayed but sustained increases in Casp3 and LC3 expression, while CD133− cells responded more rapidly. mTOR activity demonstrated distinct temporal dynamics between the two groups, suggesting differential modulation of autophagy-related pathways. LIPUS triggers temporally distinct apoptotic and autophagic responses in melanoma CSCs and non-stem cancer cells. These findings suggest a potential therapeutic avenue to selectively disrupt CSC survival mechanisms using mechanical stimulation.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.