利用可微分物理信息的光合作用机器学习推断植物驯化和提高模型的可推广性

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Doaa Aboelyazeed, Chonggang Xu, Lianhong Gu, Xiangzhong Luo, Jiangtao Liu, Kathryn Lawson, Chaopeng Shen
{"title":"利用可微分物理信息的光合作用机器学习推断植物驯化和提高模型的可推广性","authors":"Doaa Aboelyazeed,&nbsp;Chonggang Xu,&nbsp;Lianhong Gu,&nbsp;Xiangzhong Luo,&nbsp;Jiangtao Liu,&nbsp;Kathryn Lawson,&nbsp;Chaopeng Shen","doi":"10.1029/2024JG008552","DOIUrl":null,"url":null,"abstract":"<p>Net photosynthesis (<i>A</i><sub><i>N</i></sub>) is a key component of the global carbon cycle influencing climate feedback over decadal scales. Although plant acclimation to environmental changes can modify <i>A</i><sub><i>N</i></sub>, traditional vegetation models in Earth system models (ESMs) often rely on plant functional type (PFT)-specific parameterizations or simplified acclimation assumptions limiting generalizability across time, space, and PFTs. In this study, we developed a differentiable photosynthesis model to learn the environmental dependencies of<i>V</i><sub><i>c</i>,max25</sub> (maximum carboxylation rate at 25°C, representing photosynthetic capacity), as this genre of hybrid physics-informed machine learning can seamlessly train neural networks and process-based equations together. Compared to PFT-specific parameterization of <i>V</i><sub><i>c</i>,max25</sub>, learning the environment dependencies of key photosynthetic parameters improved model spatiotemporal generalizability. Applying environmental acclimation to <i>V</i><sub><i>c</i>,max25</sub> led to substantial variations in global mean <i>A</i><sub><i>N</i></sub> indicating the need to address acclimation in ESMs. The model effectively captured multivariate observations (<i>V</i><sub><i>c</i>,max25</sub>, <i>A</i><sub><i>N</i></sub>, and stomatal conductance (<i>g</i><sub><i>s</i></sub>)) simultaneously with multivariate constraints, improving generalization across space and PFTs. It also learned sensible acclimation relationships of <i>V</i><sub><i>c,</i>max25</sub> to different environmental conditions. The model explained more than 54%, 57%, and 62% of the variance of <i>A</i><sub><i>N</i></sub>, <i>g</i><sub><i>s</i></sub>, and <i>V</i><sub><i>c</i>,max25</sub>, respectively, presenting a first global-scale spatial test benchmark of <i>A</i><sub><i>N</i></sub> and <i>g</i><sub><i>s</i></sub>. These results highlight the potential for differentiable modeling to enhance process-based modules in ESMs and effectively leverage information from large, multivariate data sets.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008552","citationCount":"0","resultStr":"{\"title\":\"Inferring Plant Acclimation and Improving Model Generalizability With Differentiable Physics-Informed Machine Learning of Photosynthesis\",\"authors\":\"Doaa Aboelyazeed,&nbsp;Chonggang Xu,&nbsp;Lianhong Gu,&nbsp;Xiangzhong Luo,&nbsp;Jiangtao Liu,&nbsp;Kathryn Lawson,&nbsp;Chaopeng Shen\",\"doi\":\"10.1029/2024JG008552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Net photosynthesis (<i>A</i><sub><i>N</i></sub>) is a key component of the global carbon cycle influencing climate feedback over decadal scales. Although plant acclimation to environmental changes can modify <i>A</i><sub><i>N</i></sub>, traditional vegetation models in Earth system models (ESMs) often rely on plant functional type (PFT)-specific parameterizations or simplified acclimation assumptions limiting generalizability across time, space, and PFTs. In this study, we developed a differentiable photosynthesis model to learn the environmental dependencies of<i>V</i><sub><i>c</i>,max25</sub> (maximum carboxylation rate at 25°C, representing photosynthetic capacity), as this genre of hybrid physics-informed machine learning can seamlessly train neural networks and process-based equations together. Compared to PFT-specific parameterization of <i>V</i><sub><i>c</i>,max25</sub>, learning the environment dependencies of key photosynthetic parameters improved model spatiotemporal generalizability. Applying environmental acclimation to <i>V</i><sub><i>c</i>,max25</sub> led to substantial variations in global mean <i>A</i><sub><i>N</i></sub> indicating the need to address acclimation in ESMs. The model effectively captured multivariate observations (<i>V</i><sub><i>c</i>,max25</sub>, <i>A</i><sub><i>N</i></sub>, and stomatal conductance (<i>g</i><sub><i>s</i></sub>)) simultaneously with multivariate constraints, improving generalization across space and PFTs. It also learned sensible acclimation relationships of <i>V</i><sub><i>c,</i>max25</sub> to different environmental conditions. The model explained more than 54%, 57%, and 62% of the variance of <i>A</i><sub><i>N</i></sub>, <i>g</i><sub><i>s</i></sub>, and <i>V</i><sub><i>c</i>,max25</sub>, respectively, presenting a first global-scale spatial test benchmark of <i>A</i><sub><i>N</i></sub> and <i>g</i><sub><i>s</i></sub>. These results highlight the potential for differentiable modeling to enhance process-based modules in ESMs and effectively leverage information from large, multivariate data sets.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 7\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008552\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008552\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008552","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

净光合作用(AN)是影响年代际尺度气候反馈的全球碳循环的关键组成部分。虽然植物对环境变化的适应可以改变AN,但传统的地球系统模型(ESMs)中的植被模型通常依赖于植物功能类型(PFT)特定的参数化或简化的适应假设,限制了时间、空间和PFT的泛化性。在这项研究中,我们开发了一个可微分的光合作用模型来学习vc,max25(25°C下的最大羧化速率,代表光合作用能力)的环境依赖性,因为这种类型的混合物理信息机器学习可以无缝地训练神经网络和基于过程的方程。与pft特定参数化Vc、max25相比,学习关键光合参数的环境依赖性提高了模型的时空泛化能力。将环境驯化应用于Vc,max25导致全球平均AN的实质性变化,表明需要解决esm中的驯化问题。该模型有效地捕获了具有多变量约束的多变量观测值(Vc、max25、AN和气孔导度(gs)),提高了跨空间和PFTs的泛化能力。还学习了Vc、max25对不同环境条件的敏感驯化关系。该模型对AN、gs和Vc、max25方差的解释分别超过54%、57%和62%,首次建立了AN和gs的全球尺度空间测试基准。这些结果突出了可微分建模的潜力,以增强esm中基于流程的模块,并有效地利用来自大型多变量数据集的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inferring Plant Acclimation and Improving Model Generalizability With Differentiable Physics-Informed Machine Learning of Photosynthesis

Inferring Plant Acclimation and Improving Model Generalizability With Differentiable Physics-Informed Machine Learning of Photosynthesis

Net photosynthesis (AN) is a key component of the global carbon cycle influencing climate feedback over decadal scales. Although plant acclimation to environmental changes can modify AN, traditional vegetation models in Earth system models (ESMs) often rely on plant functional type (PFT)-specific parameterizations or simplified acclimation assumptions limiting generalizability across time, space, and PFTs. In this study, we developed a differentiable photosynthesis model to learn the environmental dependencies ofVc,max25 (maximum carboxylation rate at 25°C, representing photosynthetic capacity), as this genre of hybrid physics-informed machine learning can seamlessly train neural networks and process-based equations together. Compared to PFT-specific parameterization of Vc,max25, learning the environment dependencies of key photosynthetic parameters improved model spatiotemporal generalizability. Applying environmental acclimation to Vc,max25 led to substantial variations in global mean AN indicating the need to address acclimation in ESMs. The model effectively captured multivariate observations (Vc,max25, AN, and stomatal conductance (gs)) simultaneously with multivariate constraints, improving generalization across space and PFTs. It also learned sensible acclimation relationships of Vc,max25 to different environmental conditions. The model explained more than 54%, 57%, and 62% of the variance of AN, gs, and Vc,max25, respectively, presenting a first global-scale spatial test benchmark of AN and gs. These results highlight the potential for differentiable modeling to enhance process-based modules in ESMs and effectively leverage information from large, multivariate data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信