资源受限平台上的FAST-LIVO2:具有高效存储和计算能力的激光雷达-惯性视觉里程计

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Bingyang Zhou;Chunran Zheng;Ziming Wang;Fangcheng Zhu;Yixi Cai;Fu Zhang
{"title":"资源受限平台上的FAST-LIVO2:具有高效存储和计算能力的激光雷达-惯性视觉里程计","authors":"Bingyang Zhou;Chunran Zheng;Ziming Wang;Fangcheng Zhu;Yixi Cai;Fu Zhang","doi":"10.1109/LRA.2025.3581125","DOIUrl":null,"url":null,"abstract":"This paper presents a lightweight LiDAR-inertial-visual odometry system optimized for resource-constrained platforms. It integrates a degeneration-aware adaptive visual frame selector into error-state iterated Kalman filter (ESIKF) with sequential updates, improving computation efficiency markedly while maintaining a similar level of robustness. Additionally, a memory-efficient mapping structure combining a locally unified visual-LiDAR map and a long-term visual map achieves a good trade-off between performance and memory usage. Extensive experiments on x86 and ARM platforms demonstrate the system's robustness and efficiency. On the Hilti dataset, our system achieves a <bold>33% reduction in per-frame runtime</b> and <bold>47% lower memory usage</b> compared to FAST-LIVO2, with only a <bold>3 cm increase in RMSE</b>. Despite this slight accuracy trade-off, our system remains competitive, outperforming state-of-the-art (SOTA) LIO methods such as FAST-LIO2 and most existing LIVO systems. These results validate the system's capability for scalable deployment on resource-constrained edge computing platforms.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"7931-7938"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAST-LIVO2 on Resource-Constrained Platforms: LiDAR-Inertial-Visual Odometry With Efficient Memory and Computation\",\"authors\":\"Bingyang Zhou;Chunran Zheng;Ziming Wang;Fangcheng Zhu;Yixi Cai;Fu Zhang\",\"doi\":\"10.1109/LRA.2025.3581125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a lightweight LiDAR-inertial-visual odometry system optimized for resource-constrained platforms. It integrates a degeneration-aware adaptive visual frame selector into error-state iterated Kalman filter (ESIKF) with sequential updates, improving computation efficiency markedly while maintaining a similar level of robustness. Additionally, a memory-efficient mapping structure combining a locally unified visual-LiDAR map and a long-term visual map achieves a good trade-off between performance and memory usage. Extensive experiments on x86 and ARM platforms demonstrate the system's robustness and efficiency. On the Hilti dataset, our system achieves a <bold>33% reduction in per-frame runtime</b> and <bold>47% lower memory usage</b> compared to FAST-LIVO2, with only a <bold>3 cm increase in RMSE</b>. Despite this slight accuracy trade-off, our system remains competitive, outperforming state-of-the-art (SOTA) LIO methods such as FAST-LIO2 and most existing LIVO systems. These results validate the system's capability for scalable deployment on resource-constrained edge computing platforms.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 8\",\"pages\":\"7931-7938\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11044436/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11044436/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种针对资源受限平台进行优化的轻型激光雷达-惯性视觉里程计系统。它将退化感知自适应视觉帧选择器集成到错误状态迭代卡尔曼滤波器(ESIKF)中,并进行序列更新,在保持类似鲁棒性的同时显著提高了计算效率。此外,结合局部统一的视觉激光雷达地图和长期视觉地图的内存高效映射结构在性能和内存使用之间实现了良好的权衡。在x86和ARM平台上的大量实验证明了该系统的鲁棒性和高效性。在喜利得数据集上,我们的系统与FAST-LIVO2相比,每帧运行时间减少33%,内存使用减少47%,RMSE仅增加3厘米。尽管在精度上有轻微的折衷,但我们的系统仍然具有竞争力,优于FAST-LIO2等最先进的LIO方法和大多数现有的LIO系统。这些结果验证了系统在资源受限的边缘计算平台上可扩展部署的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FAST-LIVO2 on Resource-Constrained Platforms: LiDAR-Inertial-Visual Odometry With Efficient Memory and Computation
This paper presents a lightweight LiDAR-inertial-visual odometry system optimized for resource-constrained platforms. It integrates a degeneration-aware adaptive visual frame selector into error-state iterated Kalman filter (ESIKF) with sequential updates, improving computation efficiency markedly while maintaining a similar level of robustness. Additionally, a memory-efficient mapping structure combining a locally unified visual-LiDAR map and a long-term visual map achieves a good trade-off between performance and memory usage. Extensive experiments on x86 and ARM platforms demonstrate the system's robustness and efficiency. On the Hilti dataset, our system achieves a 33% reduction in per-frame runtime and 47% lower memory usage compared to FAST-LIVO2, with only a 3 cm increase in RMSE. Despite this slight accuracy trade-off, our system remains competitive, outperforming state-of-the-art (SOTA) LIO methods such as FAST-LIO2 and most existing LIVO systems. These results validate the system's capability for scalable deployment on resource-constrained edge computing platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信