Lili CHEN , Wenzhe LI , Jianhua GUO , Ke LI , Zhixiang CAI , Jie WU , Weining XU , Xiaohua ZHU
{"title":"超深井大直径井眼钻进的最佳钻头选择","authors":"Lili CHEN , Wenzhe LI , Jianhua GUO , Ke LI , Zhixiang CAI , Jie WU , Weining XU , Xiaohua ZHU","doi":"10.1016/S1876-3804(25)60604-5","DOIUrl":null,"url":null,"abstract":"<div><div>To optimize the bit selection for large-diameter wellbore in the upper section of an ultra-deep well S-1, a full-well dynamic model integrating drill string vibration and bit rock-breaking was established and then verified using measured vibration data of drilling tools and actual rate of penetration (ROP) from Well HT-1 in northern Sichuan Basin. This model was employed to calculate and analyze drill string dynamic characteristics during large-diameter wellbore drilling in the Jurassic Penglaizhen Formation of Well S-1, followed by bit optimization. Research results show that during the drilling in Penglaizhen Formation of Well S-1, considering both the ROP of six candidate bits and the lateral/axial/torsional vibration characteristics of downhole tools, the six-blade dual-row cutter bit with the fastest ROP (average 7.12 m/h) was optimally selected. When using this bit, the downhole tool vibration levels remained at medium-low values. Field data showed over 90% consistency between actual ROP data and dynamic model calculation results after bit placement, demonstrating that the model can be used for bit program screening.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 3","pages":"Pages 807-816"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal bit selection for large-diameter wellbore drilling in an ultra-deep well\",\"authors\":\"Lili CHEN , Wenzhe LI , Jianhua GUO , Ke LI , Zhixiang CAI , Jie WU , Weining XU , Xiaohua ZHU\",\"doi\":\"10.1016/S1876-3804(25)60604-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To optimize the bit selection for large-diameter wellbore in the upper section of an ultra-deep well S-1, a full-well dynamic model integrating drill string vibration and bit rock-breaking was established and then verified using measured vibration data of drilling tools and actual rate of penetration (ROP) from Well HT-1 in northern Sichuan Basin. This model was employed to calculate and analyze drill string dynamic characteristics during large-diameter wellbore drilling in the Jurassic Penglaizhen Formation of Well S-1, followed by bit optimization. Research results show that during the drilling in Penglaizhen Formation of Well S-1, considering both the ROP of six candidate bits and the lateral/axial/torsional vibration characteristics of downhole tools, the six-blade dual-row cutter bit with the fastest ROP (average 7.12 m/h) was optimally selected. When using this bit, the downhole tool vibration levels remained at medium-low values. Field data showed over 90% consistency between actual ROP data and dynamic model calculation results after bit placement, demonstrating that the model can be used for bit program screening.</div></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"52 3\",\"pages\":\"Pages 807-816\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380425606045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425606045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimal bit selection for large-diameter wellbore drilling in an ultra-deep well
To optimize the bit selection for large-diameter wellbore in the upper section of an ultra-deep well S-1, a full-well dynamic model integrating drill string vibration and bit rock-breaking was established and then verified using measured vibration data of drilling tools and actual rate of penetration (ROP) from Well HT-1 in northern Sichuan Basin. This model was employed to calculate and analyze drill string dynamic characteristics during large-diameter wellbore drilling in the Jurassic Penglaizhen Formation of Well S-1, followed by bit optimization. Research results show that during the drilling in Penglaizhen Formation of Well S-1, considering both the ROP of six candidate bits and the lateral/axial/torsional vibration characteristics of downhole tools, the six-blade dual-row cutter bit with the fastest ROP (average 7.12 m/h) was optimally selected. When using this bit, the downhole tool vibration levels remained at medium-low values. Field data showed over 90% consistency between actual ROP data and dynamic model calculation results after bit placement, demonstrating that the model can be used for bit program screening.