Xiangyang Tan , Yiyang Ma , Keyuan Wang , Maoye Yin , Dong Fan , Zhihao Wang , Haiquan Hu , Zhaogang Nie , Feng Guo , Zhenbao Feng , Jun Li , Liqun Yu , Tongqun Zhang , Fei Wang , Hengshuai Li
{"title":"光催化应用新型碳氮材料和原子掺杂提高光催化效率","authors":"Xiangyang Tan , Yiyang Ma , Keyuan Wang , Maoye Yin , Dong Fan , Zhihao Wang , Haiquan Hu , Zhaogang Nie , Feng Guo , Zhenbao Feng , Jun Li , Liqun Yu , Tongqun Zhang , Fei Wang , Hengshuai Li","doi":"10.1016/j.chemphys.2025.112824","DOIUrl":null,"url":null,"abstract":"<div><div>We designed a new type of two-dimensional graphene-like carbon nitride material, g-C<sub>7</sub>N<sub>5</sub>H. Through first-principles calculations, the stability, electronic structure, optical properties, and photocatalytic performance of g-C<sub>7</sub>N<sub>5</sub>H were deeply explored. After confirming its good thermal stability through Ab initio molecular dynamics simulation, the band structure was calculated using PBE and the more accurate HSE06 hybrid functional method. The band gap width of this material is 3.41 eV under the HSE06 method, which may lead to limited photocatalytic activity. Further calculations of the band edge potential and light absorption spectrum showed that although g-C<sub>7</sub>N<sub>5</sub>H has the basic conditions for photocatalysis, its narrow light absorption range restricts the catalytic efficiency. By innovatively introducing the strategy of doping boron/phosphorus atoms at different sites, the band gap of the material was successfully reduced, and the visible light absorption boundary and intensity were expanded. This work not only reveals the potential application of two-dimensional graphene-like materials in photocatalysis but also opens up a new way to develop efficient solar energy conversion devices.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"598 ","pages":"Article 112824"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The photocatalysis application of a new carbon nitrogen material and atomic doping to improve photocatalytic efficiency\",\"authors\":\"Xiangyang Tan , Yiyang Ma , Keyuan Wang , Maoye Yin , Dong Fan , Zhihao Wang , Haiquan Hu , Zhaogang Nie , Feng Guo , Zhenbao Feng , Jun Li , Liqun Yu , Tongqun Zhang , Fei Wang , Hengshuai Li\",\"doi\":\"10.1016/j.chemphys.2025.112824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We designed a new type of two-dimensional graphene-like carbon nitride material, g-C<sub>7</sub>N<sub>5</sub>H. Through first-principles calculations, the stability, electronic structure, optical properties, and photocatalytic performance of g-C<sub>7</sub>N<sub>5</sub>H were deeply explored. After confirming its good thermal stability through Ab initio molecular dynamics simulation, the band structure was calculated using PBE and the more accurate HSE06 hybrid functional method. The band gap width of this material is 3.41 eV under the HSE06 method, which may lead to limited photocatalytic activity. Further calculations of the band edge potential and light absorption spectrum showed that although g-C<sub>7</sub>N<sub>5</sub>H has the basic conditions for photocatalysis, its narrow light absorption range restricts the catalytic efficiency. By innovatively introducing the strategy of doping boron/phosphorus atoms at different sites, the band gap of the material was successfully reduced, and the visible light absorption boundary and intensity were expanded. This work not only reveals the potential application of two-dimensional graphene-like materials in photocatalysis but also opens up a new way to develop efficient solar energy conversion devices.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"598 \",\"pages\":\"Article 112824\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002253\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002253","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The photocatalysis application of a new carbon nitrogen material and atomic doping to improve photocatalytic efficiency
We designed a new type of two-dimensional graphene-like carbon nitride material, g-C7N5H. Through first-principles calculations, the stability, electronic structure, optical properties, and photocatalytic performance of g-C7N5H were deeply explored. After confirming its good thermal stability through Ab initio molecular dynamics simulation, the band structure was calculated using PBE and the more accurate HSE06 hybrid functional method. The band gap width of this material is 3.41 eV under the HSE06 method, which may lead to limited photocatalytic activity. Further calculations of the band edge potential and light absorption spectrum showed that although g-C7N5H has the basic conditions for photocatalysis, its narrow light absorption range restricts the catalytic efficiency. By innovatively introducing the strategy of doping boron/phosphorus atoms at different sites, the band gap of the material was successfully reduced, and the visible light absorption boundary and intensity were expanded. This work not only reveals the potential application of two-dimensional graphene-like materials in photocatalysis but also opens up a new way to develop efficient solar energy conversion devices.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.