探索IV族三元Si1-x-yGeySnx合金在太阳能电池中的光伏潜力:深入的数值分析

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nikita , Jaspinder Kaur , Preeti Verma , Ajay Kumar Sharma , Jaya Madan , Rahul Pandey , Rikmantra Basu
{"title":"探索IV族三元Si1-x-yGeySnx合金在太阳能电池中的光伏潜力:深入的数值分析","authors":"Nikita ,&nbsp;Jaspinder Kaur ,&nbsp;Preeti Verma ,&nbsp;Ajay Kumar Sharma ,&nbsp;Jaya Madan ,&nbsp;Rahul Pandey ,&nbsp;Rikmantra Basu","doi":"10.1016/j.jpcs.2025.112936","DOIUrl":null,"url":null,"abstract":"<div><div>Group IV compound semiconductors consisting of silicon (Si), germanium (Ge), and tin (Sn) based Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> alloys are promising materials for next-generation photovoltaic (PV) applications because of their tunable bandgap and compatibility with existing Si technology. These materials are the backbone for the emerging field of Si Photonics as well. This study systematically explores the PV performance of Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> -based solar cells by varying the Ge composition (y = 0.25, 0.30, 0.35, 0.40). The structure incorporates WS<sub>2</sub> as an electron transport layer (ETL) and Cu<sub>2</sub>O as a hole transport layer (HTL). The simulation for investigating the performance of Cu<sub>2</sub>O/Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub>/WS<sub>2</sub>/FTO solar cell structures provides insights into key performance by optimizing the absorber layer Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> composition, absorber and transport layer thicknesses, absorber layer defect density, and interface defect density, etc. The optimized device resulted in a conversion efficiency of 24.45 % at 0.25 of Ge composition in Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub>, Open-circuit voltage (V<sub>OC</sub>) of 0.97 V, Short-circuit current density (J<sub>SC</sub>) of 28.93 mA/cm<sup>2</sup>, Fill factor (FF) of 86.94 %. The findings provide insights into optimizing Group IV Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> -based solar cells and to the best of the knowledge of the authors, this is the first attempt to work on advanced numerical simulation on group IV ternary alloy-based solar cell structures. The results reported in this study may pave the way for the development of advanced high-efficiency group IV alloy-based solar cells in the future.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112936"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring photovoltaic potential of group IV ternary Si1-x-yGeySnx alloys in solar cells: An in-depth numerical Analysis\",\"authors\":\"Nikita ,&nbsp;Jaspinder Kaur ,&nbsp;Preeti Verma ,&nbsp;Ajay Kumar Sharma ,&nbsp;Jaya Madan ,&nbsp;Rahul Pandey ,&nbsp;Rikmantra Basu\",\"doi\":\"10.1016/j.jpcs.2025.112936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Group IV compound semiconductors consisting of silicon (Si), germanium (Ge), and tin (Sn) based Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> alloys are promising materials for next-generation photovoltaic (PV) applications because of their tunable bandgap and compatibility with existing Si technology. These materials are the backbone for the emerging field of Si Photonics as well. This study systematically explores the PV performance of Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> -based solar cells by varying the Ge composition (y = 0.25, 0.30, 0.35, 0.40). The structure incorporates WS<sub>2</sub> as an electron transport layer (ETL) and Cu<sub>2</sub>O as a hole transport layer (HTL). The simulation for investigating the performance of Cu<sub>2</sub>O/Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub>/WS<sub>2</sub>/FTO solar cell structures provides insights into key performance by optimizing the absorber layer Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> composition, absorber and transport layer thicknesses, absorber layer defect density, and interface defect density, etc. The optimized device resulted in a conversion efficiency of 24.45 % at 0.25 of Ge composition in Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub>, Open-circuit voltage (V<sub>OC</sub>) of 0.97 V, Short-circuit current density (J<sub>SC</sub>) of 28.93 mA/cm<sup>2</sup>, Fill factor (FF) of 86.94 %. The findings provide insights into optimizing Group IV Si<sub>1-x-y</sub>Ge<sub>y</sub>Sn<sub>x</sub> -based solar cells and to the best of the knowledge of the authors, this is the first attempt to work on advanced numerical simulation on group IV ternary alloy-based solar cell structures. The results reported in this study may pave the way for the development of advanced high-efficiency group IV alloy-based solar cells in the future.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112936\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725003889\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003889","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

IV族化合物半导体由硅(Si)、锗(Ge)和锡(Sn)基硅-x- ygeysnx合金组成,由于其可调的带隙和与现有硅技术的兼容性,是下一代光伏(PV)应用的有前途的材料。这些材料也是新兴的硅光子学领域的支柱。本研究通过改变Ge组成(y = 0.25, 0.30, 0.35, 0.40),系统地探讨了Si1-x-yGeySnx基太阳能电池的光伏性能。该结构采用WS2作为电子传输层(ETL), Cu2O作为空穴传输层(HTL)。模拟Cu2O/Si1-x-yGeySnx/WS2/FTO太阳能电池结构的性能,通过优化吸收层Si1-x-yGeySnx的组成、吸收层和传输层厚度、吸收层缺陷密度和界面缺陷密度等,深入了解吸收层的关键性能。优化后的器件在Si1-x-yGeySnx中Ge含量为0.25时的转换效率为24.45%,开路电压(VOC)为0.97 V,短路电流密度(JSC)为28.93 mA/cm2,填充因子(FF)为86.94%。这些发现为优化基于Si1-x-yGeySnx的第四组太阳能电池提供了见解,据作者所知,这是第一次尝试对基于第四组三元合金的太阳能电池结构进行高级数值模拟。本研究报告的结果可能为未来先进高效的IV族合金基太阳能电池的发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring photovoltaic potential of group IV ternary Si1-x-yGeySnx alloys in solar cells: An in-depth numerical Analysis
Group IV compound semiconductors consisting of silicon (Si), germanium (Ge), and tin (Sn) based Si1-x-yGeySnx alloys are promising materials for next-generation photovoltaic (PV) applications because of their tunable bandgap and compatibility with existing Si technology. These materials are the backbone for the emerging field of Si Photonics as well. This study systematically explores the PV performance of Si1-x-yGeySnx -based solar cells by varying the Ge composition (y = 0.25, 0.30, 0.35, 0.40). The structure incorporates WS2 as an electron transport layer (ETL) and Cu2O as a hole transport layer (HTL). The simulation for investigating the performance of Cu2O/Si1-x-yGeySnx/WS2/FTO solar cell structures provides insights into key performance by optimizing the absorber layer Si1-x-yGeySnx composition, absorber and transport layer thicknesses, absorber layer defect density, and interface defect density, etc. The optimized device resulted in a conversion efficiency of 24.45 % at 0.25 of Ge composition in Si1-x-yGeySnx, Open-circuit voltage (VOC) of 0.97 V, Short-circuit current density (JSC) of 28.93 mA/cm2, Fill factor (FF) of 86.94 %. The findings provide insights into optimizing Group IV Si1-x-yGeySnx -based solar cells and to the best of the knowledge of the authors, this is the first attempt to work on advanced numerical simulation on group IV ternary alloy-based solar cell structures. The results reported in this study may pave the way for the development of advanced high-efficiency group IV alloy-based solar cells in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信