Nicholas S. Bourdon , Sarah Y. Dickinson , Joseph F. Bergan
{"title":"芳香化酶及其在性别分化脑网络形成中的作用","authors":"Nicholas S. Bourdon , Sarah Y. Dickinson , Joseph F. Bergan","doi":"10.1016/j.conb.2025.103066","DOIUrl":null,"url":null,"abstract":"<div><div>Steroid hormone signaling drives sex-differentiated brain development and function, with the social behavior network (SBN) as a primary site of these differences. Aromatase, densely expressed in the SBN, is essential for estrogen production in the brain, shaping brain organization during development and dynamically regulating neural function and behavior throughout life. This review explores how aromatase-dependent mechanisms establish sex differences at multiple anatomical levels, from gene expression and cellular morphology to brain-wide differences in the connectivity of neural circuits. These structural differences, in cooperation with dynamic estrogen signaling, are thought to mediate sex-differences in social behavior. Advancing our understanding of how aromatase-dependent sex differences shape brain function will require grounding both new and existing findings within the heterogeneous and interconnected circuitry of the SBN.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"93 ","pages":"Article 103066"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aromatase and its role in shaping sex-differentiated brain networks\",\"authors\":\"Nicholas S. Bourdon , Sarah Y. Dickinson , Joseph F. Bergan\",\"doi\":\"10.1016/j.conb.2025.103066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Steroid hormone signaling drives sex-differentiated brain development and function, with the social behavior network (SBN) as a primary site of these differences. Aromatase, densely expressed in the SBN, is essential for estrogen production in the brain, shaping brain organization during development and dynamically regulating neural function and behavior throughout life. This review explores how aromatase-dependent mechanisms establish sex differences at multiple anatomical levels, from gene expression and cellular morphology to brain-wide differences in the connectivity of neural circuits. These structural differences, in cooperation with dynamic estrogen signaling, are thought to mediate sex-differences in social behavior. Advancing our understanding of how aromatase-dependent sex differences shape brain function will require grounding both new and existing findings within the heterogeneous and interconnected circuitry of the SBN.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"93 \",\"pages\":\"Article 103066\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438825000972\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000972","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Aromatase and its role in shaping sex-differentiated brain networks
Steroid hormone signaling drives sex-differentiated brain development and function, with the social behavior network (SBN) as a primary site of these differences. Aromatase, densely expressed in the SBN, is essential for estrogen production in the brain, shaping brain organization during development and dynamically regulating neural function and behavior throughout life. This review explores how aromatase-dependent mechanisms establish sex differences at multiple anatomical levels, from gene expression and cellular morphology to brain-wide differences in the connectivity of neural circuits. These structural differences, in cooperation with dynamic estrogen signaling, are thought to mediate sex-differences in social behavior. Advancing our understanding of how aromatase-dependent sex differences shape brain function will require grounding both new and existing findings within the heterogeneous and interconnected circuitry of the SBN.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience