{"title":"(n,m)-图的指数增广萨格勒布指数","authors":"Chunlei Xu , Lkhagva Buyantogtokh , Shiikhar Dorjsembe , Dechinpuntsag Bolormaa , Suyalabateer Bao","doi":"10.1016/j.dam.2025.06.009","DOIUrl":null,"url":null,"abstract":"<div><div>In the fields of graph theory and chemical graph theory, topological indices play a crucial role in characterizing the structural properties of molecules. This paper focuses on the extremum problems related to the exponential augmented Zagreb index (EAZ) within the class of <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-graphs. The EAZ index for a graph <span><math><mi>G</mi></math></span> is defined as <span><span><span><math><mrow><mi>E</mi><mi>A</mi><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>−</mo><mn>2</mn></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>3</mn></mrow></msup></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> represents the degree of a vertex <span><math><mi>u</mi></math></span>. By employing inequality techniques and graph operation constructions, the extremum problems of this index are thoroughly analyzed. The maximum values of this index are precisely determined, and the corresponding structural characteristics of the graphs that achieve these extreme values are described in detail.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 151-159"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential augmented Zagreb index of (n,m)-graphs\",\"authors\":\"Chunlei Xu , Lkhagva Buyantogtokh , Shiikhar Dorjsembe , Dechinpuntsag Bolormaa , Suyalabateer Bao\",\"doi\":\"10.1016/j.dam.2025.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the fields of graph theory and chemical graph theory, topological indices play a crucial role in characterizing the structural properties of molecules. This paper focuses on the extremum problems related to the exponential augmented Zagreb index (EAZ) within the class of <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-graphs. The EAZ index for a graph <span><math><mi>G</mi></math></span> is defined as <span><span><span><math><mrow><mi>E</mi><mi>A</mi><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>−</mo><mn>2</mn></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>3</mn></mrow></msup></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> represents the degree of a vertex <span><math><mi>u</mi></math></span>. By employing inequality techniques and graph operation constructions, the extremum problems of this index are thoroughly analyzed. The maximum values of this index are precisely determined, and the corresponding structural characteristics of the graphs that achieve these extreme values are described in detail.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"376 \",\"pages\":\"Pages 151-159\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003245\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003245","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Exponential augmented Zagreb index of (n,m)-graphs
In the fields of graph theory and chemical graph theory, topological indices play a crucial role in characterizing the structural properties of molecules. This paper focuses on the extremum problems related to the exponential augmented Zagreb index (EAZ) within the class of -graphs. The EAZ index for a graph is defined as where represents the degree of a vertex . By employing inequality techniques and graph operation constructions, the extremum problems of this index are thoroughly analyzed. The maximum values of this index are precisely determined, and the corresponding structural characteristics of the graphs that achieve these extreme values are described in detail.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.