{"title":"循环边连通性图的极值谱半径","authors":"Yu Wang, Dan Li","doi":"10.1016/j.dam.2025.06.019","DOIUrl":null,"url":null,"abstract":"<div><div>An edge-cut <span><math><mi>F</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a cyclic edge-cut if <span><math><mrow><mi>G</mi><mspace></mspace><mo>−</mo><mspace></mspace><mi>F</mi></mrow></math></span> has at least two components containing cycles. The minimum cardinality over all cyclic edge-cuts of <span><math><mi>G</mi></math></span> is called the cyclic edge-connectivity of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we establish a tight upper bound for the cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> among all graphs of order <span><math><mi>n</mi></math></span> with minimum degree <span><math><mi>δ</mi></math></span>. Denote by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> the set of graphs of order <span><math><mi>n</mi></math></span> with cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and minimum degree <span><math><mi>δ</mi></math></span>. Moreover, we determine the maximum spectral radius among all graphs in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> and characterize the corresponding extremal graphs. This generalizes some previous results on edge-connectivity and essential edge-connectivity.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 316-331"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal spectral radius of graphs with cyclic edge-connectivity\",\"authors\":\"Yu Wang, Dan Li\",\"doi\":\"10.1016/j.dam.2025.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An edge-cut <span><math><mi>F</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a cyclic edge-cut if <span><math><mrow><mi>G</mi><mspace></mspace><mo>−</mo><mspace></mspace><mi>F</mi></mrow></math></span> has at least two components containing cycles. The minimum cardinality over all cyclic edge-cuts of <span><math><mi>G</mi></math></span> is called the cyclic edge-connectivity of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we establish a tight upper bound for the cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> among all graphs of order <span><math><mi>n</mi></math></span> with minimum degree <span><math><mi>δ</mi></math></span>. Denote by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> the set of graphs of order <span><math><mi>n</mi></math></span> with cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and minimum degree <span><math><mi>δ</mi></math></span>. Moreover, we determine the maximum spectral radius among all graphs in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> and characterize the corresponding extremal graphs. This generalizes some previous results on edge-connectivity and essential edge-connectivity.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"375 \",\"pages\":\"Pages 316-331\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003348\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Extremal spectral radius of graphs with cyclic edge-connectivity
An edge-cut of a graph is a cyclic edge-cut if has at least two components containing cycles. The minimum cardinality over all cyclic edge-cuts of is called the cyclic edge-connectivity of , denoted by . In this paper, we establish a tight upper bound for the cyclic edge-connectivity among all graphs of order with minimum degree . Denote by the set of graphs of order with cyclic edge-connectivity and minimum degree . Moreover, we determine the maximum spectral radius among all graphs in and characterize the corresponding extremal graphs. This generalizes some previous results on edge-connectivity and essential edge-connectivity.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.