循环边连通性图的极值谱半径

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yu Wang, Dan Li
{"title":"循环边连通性图的极值谱半径","authors":"Yu Wang,&nbsp;Dan Li","doi":"10.1016/j.dam.2025.06.019","DOIUrl":null,"url":null,"abstract":"<div><div>An edge-cut <span><math><mi>F</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a cyclic edge-cut if <span><math><mrow><mi>G</mi><mspace></mspace><mo>−</mo><mspace></mspace><mi>F</mi></mrow></math></span> has at least two components containing cycles. The minimum cardinality over all cyclic edge-cuts of <span><math><mi>G</mi></math></span> is called the cyclic edge-connectivity of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we establish a tight upper bound for the cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> among all graphs of order <span><math><mi>n</mi></math></span> with minimum degree <span><math><mi>δ</mi></math></span>. Denote by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> the set of graphs of order <span><math><mi>n</mi></math></span> with cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and minimum degree <span><math><mi>δ</mi></math></span>. Moreover, we determine the maximum spectral radius among all graphs in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> and characterize the corresponding extremal graphs. This generalizes some previous results on edge-connectivity and essential edge-connectivity.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 316-331"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal spectral radius of graphs with cyclic edge-connectivity\",\"authors\":\"Yu Wang,&nbsp;Dan Li\",\"doi\":\"10.1016/j.dam.2025.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An edge-cut <span><math><mi>F</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a cyclic edge-cut if <span><math><mrow><mi>G</mi><mspace></mspace><mo>−</mo><mspace></mspace><mi>F</mi></mrow></math></span> has at least two components containing cycles. The minimum cardinality over all cyclic edge-cuts of <span><math><mi>G</mi></math></span> is called the cyclic edge-connectivity of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we establish a tight upper bound for the cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> among all graphs of order <span><math><mi>n</mi></math></span> with minimum degree <span><math><mi>δ</mi></math></span>. Denote by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> the set of graphs of order <span><math><mi>n</mi></math></span> with cyclic edge-connectivity <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and minimum degree <span><math><mi>δ</mi></math></span>. Moreover, we determine the maximum spectral radius among all graphs in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msubsup></math></span> and characterize the corresponding extremal graphs. This generalizes some previous results on edge-connectivity and essential edge-connectivity.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"375 \",\"pages\":\"Pages 316-331\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003348\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的边切F是一个循环边切,如果G−F至少有两个包含环的分量。G的所有循环边切上的最小基数称为G的循环边连通性,用λ(G)表示。本文建立了最小度为δ的所有n阶图的循环边连通性λ的紧上界。用Hn,δ λ表示具有循环边连通性λ和最小度δ的n阶图集。此外,我们确定了Hn,δ λ中所有图的最大谱半径,并对相应的极值图进行了表征。这推广了先前关于边连通性和基本边连通性的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal spectral radius of graphs with cyclic edge-connectivity
An edge-cut F of a graph G is a cyclic edge-cut if GF has at least two components containing cycles. The minimum cardinality over all cyclic edge-cuts of G is called the cyclic edge-connectivity of G, denoted by cλ(G). In this paper, we establish a tight upper bound for the cyclic edge-connectivity cλ among all graphs of order n with minimum degree δ. Denote by Hn,δcλ the set of graphs of order n with cyclic edge-connectivity cλ and minimum degree δ. Moreover, we determine the maximum spectral radius among all graphs in Hn,δcλ and characterize the corresponding extremal graphs. This generalizes some previous results on edge-connectivity and essential edge-connectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信