具有临界非线性的半线性分数进化方程的尖锐寿命估计

IF 2.4 2区 数学 Q1 MATHEMATICS
Wenhui Chen , Giovanni Girardi
{"title":"具有临界非线性的半线性分数进化方程的尖锐寿命估计","authors":"Wenhui Chen ,&nbsp;Giovanni Girardi","doi":"10.1016/j.jde.2025.113568","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider semilinear wave equation and semilinear second order <em>σ</em>-evolution equations with different (effective or non-effective) damping mechanisms driven by fractional Laplace operators; in particular, the nonlinear term is the product of a power nonlinearity <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> with the critical exponent <span><math><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and a modulus of continuity <span><math><mi>μ</mi><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>)</mo></math></span>. We derive a critical condition on the nonlinearity by proving a global in time existence result under the Dini condition on <em>μ</em> and a blow-up result when <em>μ</em> does not satisfy the Dini condition. Especially, in this latter case we determine new sharp estimates for the lifespan of local solutions, obtaining coincident upper and lower bounds of the lifespan. In particular, we derive a new sharp estimate for the wave equation with structural damping and classical power nonlinearity <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> in the critical case <span><math><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, not yet determined in previous literature. The proof of the blow-up results and the upper bound estimates of the lifespan require the introduction of new test functions which allows to overcome some new difficulties due to the presence of both non-local differential operators and general nonlinearities.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113568"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp lifespan estimates for semilinear fractional evolution equations with critical nonlinearity\",\"authors\":\"Wenhui Chen ,&nbsp;Giovanni Girardi\",\"doi\":\"10.1016/j.jde.2025.113568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider semilinear wave equation and semilinear second order <em>σ</em>-evolution equations with different (effective or non-effective) damping mechanisms driven by fractional Laplace operators; in particular, the nonlinear term is the product of a power nonlinearity <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> with the critical exponent <span><math><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and a modulus of continuity <span><math><mi>μ</mi><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>)</mo></math></span>. We derive a critical condition on the nonlinearity by proving a global in time existence result under the Dini condition on <em>μ</em> and a blow-up result when <em>μ</em> does not satisfy the Dini condition. Especially, in this latter case we determine new sharp estimates for the lifespan of local solutions, obtaining coincident upper and lower bounds of the lifespan. In particular, we derive a new sharp estimate for the wave equation with structural damping and classical power nonlinearity <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> in the critical case <span><math><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, not yet determined in previous literature. The proof of the blow-up results and the upper bound estimates of the lifespan require the introduction of new test functions which allows to overcome some new difficulties due to the presence of both non-local differential operators and general nonlinearities.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113568\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005959\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005959","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑由分数阶拉普拉斯算子驱动的具有不同(有效或非有效)阻尼机制的半线性波动方程和半线性二阶σ-演化方程;特别地,非线性项是临界指数p=pc(n)的幂非线性|u|p与连续模μ(|u|)的乘积。通过证明μ在Dini条件下的一个全局时间存在性结果和μ不满足Dini条件时的一个爆破结果,得到了非线性的一个临界条件。特别地,在后一种情况下,我们确定了局部解寿命的新锐估计,得到了寿命的重合上界和下界。特别地,我们导出了在临界情况p=pc(n)下具有结构阻尼和经典功率非线性的波动方程的一个新的尖锐估计,这在以前的文献中尚未确定。爆破结果的证明和寿命的上界估计需要引入新的测试函数,这可以克服由于非局部微分算子和一般非线性的存在而产生的一些新困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp lifespan estimates for semilinear fractional evolution equations with critical nonlinearity
In this paper we consider semilinear wave equation and semilinear second order σ-evolution equations with different (effective or non-effective) damping mechanisms driven by fractional Laplace operators; in particular, the nonlinear term is the product of a power nonlinearity |u|p with the critical exponent p=pc(n) and a modulus of continuity μ(|u|). We derive a critical condition on the nonlinearity by proving a global in time existence result under the Dini condition on μ and a blow-up result when μ does not satisfy the Dini condition. Especially, in this latter case we determine new sharp estimates for the lifespan of local solutions, obtaining coincident upper and lower bounds of the lifespan. In particular, we derive a new sharp estimate for the wave equation with structural damping and classical power nonlinearity |u|p in the critical case p=pc(n), not yet determined in previous literature. The proof of the blow-up results and the upper bound estimates of the lifespan require the introduction of new test functions which allows to overcome some new difficulties due to the presence of both non-local differential operators and general nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信