定义域上Sobolev函数的多线性极大函数对易子的弱可微性

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Feng Liu , Xiao Zhang
{"title":"定义域上Sobolev函数的多线性极大函数对易子的弱可微性","authors":"Feng Liu ,&nbsp;Xiao Zhang","doi":"10.1016/j.bulsci.2025.103691","DOIUrl":null,"url":null,"abstract":"<div><div>A systematic study is given for weak differentiability for the commutators of multilinear maximal operators and multilinear maximal commutators associated with a vector-valued function <span><math><mover><mrow><mi>b</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> as well as their fractional variants on domains, where each <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> belongs to Lipschitz space. The bounds and continuity for the above commutators are established on the first order Sobolev spaces. The bounds for the above commutators are also proved on the Sobolev spaces with zero boundary values.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103691"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak differentiability for commutators of multilinear maximal functions of Sobolev functions on domains\",\"authors\":\"Feng Liu ,&nbsp;Xiao Zhang\",\"doi\":\"10.1016/j.bulsci.2025.103691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A systematic study is given for weak differentiability for the commutators of multilinear maximal operators and multilinear maximal commutators associated with a vector-valued function <span><math><mover><mrow><mi>b</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> as well as their fractional variants on domains, where each <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> belongs to Lipschitz space. The bounds and continuity for the above commutators are established on the first order Sobolev spaces. The bounds for the above commutators are also proved on the Sobolev spaces with zero boundary values.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103691\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001174\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001174","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

系统地研究了与向量值函数b→=(b1,…,bm)相关的多线性极大算子的对易子和多线性极大对易子在每个bi属于Lipschitz空间的定域上的弱可微性及其分数变分。在一阶Sobolev空间上建立了上述对易子的界和连续性。在边值为零的Sobolev空间上也证明了上述对易子的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak differentiability for commutators of multilinear maximal functions of Sobolev functions on domains
A systematic study is given for weak differentiability for the commutators of multilinear maximal operators and multilinear maximal commutators associated with a vector-valued function b=(b1,,bm) as well as their fractional variants on domains, where each bi belongs to Lipschitz space. The bounds and continuity for the above commutators are established on the first order Sobolev spaces. The bounds for the above commutators are also proved on the Sobolev spaces with zero boundary values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信