Banach空间值全纯函数的多维玻尔半径

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Shankey Kumar , Ramesh Manna
{"title":"Banach空间值全纯函数的多维玻尔半径","authors":"Shankey Kumar ,&nbsp;Ramesh Manna","doi":"10.1016/j.bulsci.2025.103688","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study the multi-dimensional Bohr radii of holomorphic functions defined on the Banach sequence spaces with values in the Banach spaces. For the case of finite dimensional Banach spaces, we exhibit the exact asymptotic growth of the Bohr radius. To achieve our goal in the finite case, we use <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span>-summability of certain coefficients of a given polynomial in terms of its uniform norm on <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. The infinite case is handled using the techniques developed in recent years from the work of Defant, Maestre and Schwarting. We crucially use several properties of the symmetric <em>M</em>-linear mapping associated with a homogeneous polynomial of degree <em>M</em> in our analysis. Furthermore, we study the bounds of the arithmetic Bohr radius of Banach space-valued holomorphic functions defined on the Banach sequence spaces, which generalizes the work of Defant, Maestre, and Prengel in this direction.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103688"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-dimensional Bohr radii of Banach space valued holomorphic functions\",\"authors\":\"Shankey Kumar ,&nbsp;Ramesh Manna\",\"doi\":\"10.1016/j.bulsci.2025.103688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we study the multi-dimensional Bohr radii of holomorphic functions defined on the Banach sequence spaces with values in the Banach spaces. For the case of finite dimensional Banach spaces, we exhibit the exact asymptotic growth of the Bohr radius. To achieve our goal in the finite case, we use <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span>-summability of certain coefficients of a given polynomial in terms of its uniform norm on <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. The infinite case is handled using the techniques developed in recent years from the work of Defant, Maestre and Schwarting. We crucially use several properties of the symmetric <em>M</em>-linear mapping associated with a homogeneous polynomial of degree <em>M</em> in our analysis. Furthermore, we study the bounds of the arithmetic Bohr radius of Banach space-valued holomorphic functions defined on the Banach sequence spaces, which generalizes the work of Defant, Maestre, and Prengel in this direction.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103688\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001149\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001149","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了定义在Banach序列空间上的全纯函数的多维玻尔半径,其值在Banach空间中。对于有限维的巴拿赫空间,我们给出了玻尔半径的精确渐近增长。为了在有限情况下达到我们的目标,我们使用了一个给定多项式的某些系数的可和性,用它在pn上的一致范数表示。无限的情况是使用近年来从Defant, Maestre和Schwarting的工作中发展出来的技术来处理的。在我们的分析中,我们关键地使用了与M次齐次多项式相关的对称M-线性映射的几个性质。进一步研究了在Banach序列空间上定义的Banach空值全纯函数的算术玻尔半径的界,推广了Defant、Maestre和Prengel在这方面的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-dimensional Bohr radii of Banach space valued holomorphic functions
In this article, we study the multi-dimensional Bohr radii of holomorphic functions defined on the Banach sequence spaces with values in the Banach spaces. For the case of finite dimensional Banach spaces, we exhibit the exact asymptotic growth of the Bohr radius. To achieve our goal in the finite case, we use p-summability of certain coefficients of a given polynomial in terms of its uniform norm on pn. The infinite case is handled using the techniques developed in recent years from the work of Defant, Maestre and Schwarting. We crucially use several properties of the symmetric M-linear mapping associated with a homogeneous polynomial of degree M in our analysis. Furthermore, we study the bounds of the arithmetic Bohr radius of Banach space-valued holomorphic functions defined on the Banach sequence spaces, which generalizes the work of Defant, Maestre, and Prengel in this direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信