中国大陆潜在强至大地震情景地震动数据集的发展及影响分析

IF 8.4 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Huaiqun Zhao , Jidong Wu , Wenkai Chen , Sihan Yu , Rui Mao , Dengjie Kang
{"title":"中国大陆潜在强至大地震情景地震动数据集的发展及影响分析","authors":"Huaiqun Zhao ,&nbsp;Jidong Wu ,&nbsp;Wenkai Chen ,&nbsp;Sihan Yu ,&nbsp;Rui Mao ,&nbsp;Dengjie Kang","doi":"10.1016/j.enggeo.2025.108198","DOIUrl":null,"url":null,"abstract":"<div><div>Ground-motion data (GMD) are essential for regional seismic-hazard and resilience assessments; however, accessible GMD for potential earthquakes in mainland China remain critically limited. To fill this gap, we identified 50 seismogenic locations informed by geological and seismological hazard zonations and defined four magnitude levels (Mw 6.5, 7.0, 7.5, and 8.0) aligned with potential damage thresholds, yielding 200 earthquake scenarios. For each scenario, we applied a robust ground-motion prediction equation (GMPE)—validated in recent Chinese emergency responses—to generate 1 km × 1 km shapefiles of peak ground acceleration (PGA), peak ground velocity (PGV), and Chinese seismic intensity (CSI). We then assessed the impacts of seismic hazard on counties, population exposure, and building stocks. Results indicate that the Jin–Ji, Shan–Gan, and Chuan–Yun junctions are most susceptible to major earthquakes. Under the Mw 7.5 scenario, seismic hazards in the Beijing–Tianjin–Hebei region and central Shaanxi warrant particular attention to urban–rural exposure disparities, transport network vulnerabilities, and photovoltaic infrastructure risks. These high-resolution GMD support disaster-loss modeling, urban-resilience assessments, and infrastructure-vulnerability analyses. Future work will integrate station monitoring and numerical simulations to refine seismic-damage evaluations and emergency-response planning.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"354 ","pages":"Article 108198"},"PeriodicalIF":8.4000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and impact analysis of ground motion datasets for potential strong-to-great seismic scenarios in Chinese mainland\",\"authors\":\"Huaiqun Zhao ,&nbsp;Jidong Wu ,&nbsp;Wenkai Chen ,&nbsp;Sihan Yu ,&nbsp;Rui Mao ,&nbsp;Dengjie Kang\",\"doi\":\"10.1016/j.enggeo.2025.108198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ground-motion data (GMD) are essential for regional seismic-hazard and resilience assessments; however, accessible GMD for potential earthquakes in mainland China remain critically limited. To fill this gap, we identified 50 seismogenic locations informed by geological and seismological hazard zonations and defined four magnitude levels (Mw 6.5, 7.0, 7.5, and 8.0) aligned with potential damage thresholds, yielding 200 earthquake scenarios. For each scenario, we applied a robust ground-motion prediction equation (GMPE)—validated in recent Chinese emergency responses—to generate 1 km × 1 km shapefiles of peak ground acceleration (PGA), peak ground velocity (PGV), and Chinese seismic intensity (CSI). We then assessed the impacts of seismic hazard on counties, population exposure, and building stocks. Results indicate that the Jin–Ji, Shan–Gan, and Chuan–Yun junctions are most susceptible to major earthquakes. Under the Mw 7.5 scenario, seismic hazards in the Beijing–Tianjin–Hebei region and central Shaanxi warrant particular attention to urban–rural exposure disparities, transport network vulnerabilities, and photovoltaic infrastructure risks. These high-resolution GMD support disaster-loss modeling, urban-resilience assessments, and infrastructure-vulnerability analyses. Future work will integrate station monitoring and numerical simulations to refine seismic-damage evaluations and emergency-response planning.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"354 \",\"pages\":\"Article 108198\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795225002947\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225002947","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

地面运动数据(GMD)对于区域地震危险性和恢复力评估至关重要;然而,中国大陆潜在地震的可用GMD仍然非常有限。为了填补这一空白,我们根据地质和地震危险区确定了50个发震地点,并根据潜在的破坏阈值定义了4个震级(Mw 6.5、7.0、7.5和8.0),产生了200种地震情景。对于每种情况,我们应用了一个鲁棒的地面运动预测方程(GMPE)——在最近的中国应急响应中得到了验证——来生成1公里× 1公里的峰值地面加速度(PGA)、峰值地面速度(PGV)和中国地震强度(CSI)的形状文件。然后,我们评估了地震灾害对县、人口暴露和建筑存量的影响。结果表明,晋济、山干和川云交界是最容易发生大地震的地区。在7.5 Mw情景下,京津冀地区和陕西中部的地震灾害需要特别关注城乡暴露差异、交通网络脆弱性和光伏基础设施风险。这些高分辨率GMD支持灾害损失建模、城市恢复力评估和基础设施脆弱性分析。未来的工作将整合台站监测和数值模拟,以完善地震损害评估和应急响应规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and impact analysis of ground motion datasets for potential strong-to-great seismic scenarios in Chinese mainland
Ground-motion data (GMD) are essential for regional seismic-hazard and resilience assessments; however, accessible GMD for potential earthquakes in mainland China remain critically limited. To fill this gap, we identified 50 seismogenic locations informed by geological and seismological hazard zonations and defined four magnitude levels (Mw 6.5, 7.0, 7.5, and 8.0) aligned with potential damage thresholds, yielding 200 earthquake scenarios. For each scenario, we applied a robust ground-motion prediction equation (GMPE)—validated in recent Chinese emergency responses—to generate 1 km × 1 km shapefiles of peak ground acceleration (PGA), peak ground velocity (PGV), and Chinese seismic intensity (CSI). We then assessed the impacts of seismic hazard on counties, population exposure, and building stocks. Results indicate that the Jin–Ji, Shan–Gan, and Chuan–Yun junctions are most susceptible to major earthquakes. Under the Mw 7.5 scenario, seismic hazards in the Beijing–Tianjin–Hebei region and central Shaanxi warrant particular attention to urban–rural exposure disparities, transport network vulnerabilities, and photovoltaic infrastructure risks. These high-resolution GMD support disaster-loss modeling, urban-resilience assessments, and infrastructure-vulnerability analyses. Future work will integrate station monitoring and numerical simulations to refine seismic-damage evaluations and emergency-response planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信