一维三次非线性Schrödinger方程二分量系统小解的渐近性质

IF 2.4 2区 数学 Q1 MATHEMATICS
Yuji Sagawa
{"title":"一维三次非线性Schrödinger方程二分量系统小解的渐近性质","authors":"Yuji Sagawa","doi":"10.1016/j.jde.2025.113576","DOIUrl":null,"url":null,"abstract":"<div><div>In this manuscript we specify asymptotic behavior of small solutions to initial value problem for a 2-component system of cubic nonlinear Schrödinger equations in one dimensional Euclidean space. As a consequence, the solution behaves like a free solution as <span><math><mi>t</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Moreover, a non-decay result for the solution is derived, which is non-trivial in terms of the long range scattering.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113576"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of small solutions to a 2-component system of cubic nonlinear Schrödinger equations in one space dimension\",\"authors\":\"Yuji Sagawa\",\"doi\":\"10.1016/j.jde.2025.113576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this manuscript we specify asymptotic behavior of small solutions to initial value problem for a 2-component system of cubic nonlinear Schrödinger equations in one dimensional Euclidean space. As a consequence, the solution behaves like a free solution as <span><math><mi>t</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Moreover, a non-decay result for the solution is derived, which is non-trivial in terms of the long range scattering.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113576\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006035\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006035","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一维欧几里德空间中二分量三次非线性Schrödinger方程组初值问题小解的渐近性质。因此,该解在t→+∞时表现为自由解。此外,还推导出了解的非衰减结果,这在长范围散射方面是非平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of small solutions to a 2-component system of cubic nonlinear Schrödinger equations in one space dimension
In this manuscript we specify asymptotic behavior of small solutions to initial value problem for a 2-component system of cubic nonlinear Schrödinger equations in one dimensional Euclidean space. As a consequence, the solution behaves like a free solution as t+. Moreover, a non-decay result for the solution is derived, which is non-trivial in terms of the long range scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信