Tianyuan Xu , Shanming Ji , Ming Mei , Jingxue Yin
{"title":"具有退化扩散的Nagumo方程行波的全局稳定性","authors":"Tianyuan Xu , Shanming Ji , Ming Mei , Jingxue Yin","doi":"10.1016/j.jde.2025.113587","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the global nonlinear stability with possibly large perturbations of the unique sharp / smooth traveling waves for the degenerate diffusion equations with Nagumo (bistable) reaction. Two technical issues arise in this study. One is the shortage of weak regularity of sharp traveling waves, the other difficulty is the non-absorbing initial-perturbation around the smooth traveling waves at the far field <span><math><mi>x</mi><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>. For the sharp traveling wave case, we technically construct weak sub- and super-solutions with semi-compact supports via translation and scaling of the unique sharp traveling wave to characterize the motion of the steep moving edges and avoid the weak regularity of the solution near the steep edges. For the smooth traveling wave case, we artfully combine both the translation and scaling type sub- and super-solutions and the translation and superposition type sub- and super-solutions in a systematical manner.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113587"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global stability of traveling waves for Nagumo equations with degenerate diffusion\",\"authors\":\"Tianyuan Xu , Shanming Ji , Ming Mei , Jingxue Yin\",\"doi\":\"10.1016/j.jde.2025.113587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the global nonlinear stability with possibly large perturbations of the unique sharp / smooth traveling waves for the degenerate diffusion equations with Nagumo (bistable) reaction. Two technical issues arise in this study. One is the shortage of weak regularity of sharp traveling waves, the other difficulty is the non-absorbing initial-perturbation around the smooth traveling waves at the far field <span><math><mi>x</mi><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>. For the sharp traveling wave case, we technically construct weak sub- and super-solutions with semi-compact supports via translation and scaling of the unique sharp traveling wave to characterize the motion of the steep moving edges and avoid the weak regularity of the solution near the steep edges. For the smooth traveling wave case, we artfully combine both the translation and scaling type sub- and super-solutions and the translation and superposition type sub- and super-solutions in a systematical manner.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113587\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500614X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500614X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global stability of traveling waves for Nagumo equations with degenerate diffusion
This paper is concerned with the global nonlinear stability with possibly large perturbations of the unique sharp / smooth traveling waves for the degenerate diffusion equations with Nagumo (bistable) reaction. Two technical issues arise in this study. One is the shortage of weak regularity of sharp traveling waves, the other difficulty is the non-absorbing initial-perturbation around the smooth traveling waves at the far field . For the sharp traveling wave case, we technically construct weak sub- and super-solutions with semi-compact supports via translation and scaling of the unique sharp traveling wave to characterize the motion of the steep moving edges and avoid the weak regularity of the solution near the steep edges. For the smooth traveling wave case, we artfully combine both the translation and scaling type sub- and super-solutions and the translation and superposition type sub- and super-solutions in a systematical manner.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics