用于腹腔镜手术的图像分割网络

Kang Peng , Yaoyuan Chang , Guodong Lang , Jian Xu , Yongsheng Gao , Jiajun Yin , Jie Zhao
{"title":"用于腹腔镜手术的图像分割网络","authors":"Kang Peng ,&nbsp;Yaoyuan Chang ,&nbsp;Guodong Lang ,&nbsp;Jian Xu ,&nbsp;Yongsheng Gao ,&nbsp;Jiajun Yin ,&nbsp;Jie Zhao","doi":"10.1016/j.birob.2025.100236","DOIUrl":null,"url":null,"abstract":"<div><div>Surgical image segmentation serves as the foundation for laparoscopic surgical navigation technology. The indistinct local features of biological tissues in laparoscopic image pose challenges for image segmentation. To address this issue, we develop an image segmentation network tailored for laparoscopic surgery. Firstly, we introduce the Mixed Attention Enhancement (MAE) module that sequentially conducts the Channel Attention Enhancement (CAE) module and the Global Feature Enhancement (GFE) module linked in series. The CAE module enhances the network’s perception of prominent channels, allowing feature maps to exhibit clear local features. The GFE module is capable of extracting global features from both the height and width dimensions of images and integrating them into three-dimensional features. This enhancement improves the network’s ability to capture global features, thereby facilitating the inference of regions with indistinct local features. Secondly, we propose the Multi-scale Feature Fusion (MFF) module. This module expands the feature map into various scales, further enlarging the network’s receptive field and enhancing perception of features at multiple scales. In addition, we tested the proposed network on the EndoVis 2018 and a human minimally invasive liver resection image segmentation dataset, comparing it against six other advanced image segmentation networks. The comparative test results demonstrate that the proposed network achieves the most advanced performance on both datasets, proving its potential in improving surgical image segmentation outcome. The codes of MAMNet are available at: <span><span>https://github.com/Pang1234567/MAMNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 3","pages":"Article 100236"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image segmentation network for laparoscopic surgery\",\"authors\":\"Kang Peng ,&nbsp;Yaoyuan Chang ,&nbsp;Guodong Lang ,&nbsp;Jian Xu ,&nbsp;Yongsheng Gao ,&nbsp;Jiajun Yin ,&nbsp;Jie Zhao\",\"doi\":\"10.1016/j.birob.2025.100236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surgical image segmentation serves as the foundation for laparoscopic surgical navigation technology. The indistinct local features of biological tissues in laparoscopic image pose challenges for image segmentation. To address this issue, we develop an image segmentation network tailored for laparoscopic surgery. Firstly, we introduce the Mixed Attention Enhancement (MAE) module that sequentially conducts the Channel Attention Enhancement (CAE) module and the Global Feature Enhancement (GFE) module linked in series. The CAE module enhances the network’s perception of prominent channels, allowing feature maps to exhibit clear local features. The GFE module is capable of extracting global features from both the height and width dimensions of images and integrating them into three-dimensional features. This enhancement improves the network’s ability to capture global features, thereby facilitating the inference of regions with indistinct local features. Secondly, we propose the Multi-scale Feature Fusion (MFF) module. This module expands the feature map into various scales, further enlarging the network’s receptive field and enhancing perception of features at multiple scales. In addition, we tested the proposed network on the EndoVis 2018 and a human minimally invasive liver resection image segmentation dataset, comparing it against six other advanced image segmentation networks. The comparative test results demonstrate that the proposed network achieves the most advanced performance on both datasets, proving its potential in improving surgical image segmentation outcome. The codes of MAMNet are available at: <span><span>https://github.com/Pang1234567/MAMNet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 3\",\"pages\":\"Article 100236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379725000270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379725000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手术图像分割是腹腔镜手术导航技术的基础。腹腔镜图像中生物组织的局部特征不明确,给图像分割带来了挑战。为了解决这个问题,我们开发了一个适合腹腔镜手术的图像分割网络。首先,我们介绍了混合注意增强(MAE)模块,该模块依次将信道注意增强(CAE)模块和全局特征增强(GFE)模块串联起来。CAE模块增强了网络对突出通道的感知,允许特征图显示清晰的局部特征。GFE模块能够从图像的高度和宽度两个维度提取全局特征,并将其整合为三维特征。这种增强提高了网络捕获全局特征的能力,从而促进了局部特征不明确的区域的推断。其次,提出了多尺度特征融合(MFF)模块。该模块将特征映射扩展到不同的尺度,进一步扩大了网络的接受野,增强了对多尺度特征的感知。此外,我们在EndoVis 2018和人类微创肝切除图像分割数据集上测试了所提出的网络,并将其与其他六种先进的图像分割网络进行了比较。对比测试结果表明,本文提出的网络在两个数据集上都取得了最先进的性能,证明了其在提高手术图像分割效果方面的潜力。MAMNet的代码可在https://github.com/Pang1234567/MAMNet获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image segmentation network for laparoscopic surgery
Surgical image segmentation serves as the foundation for laparoscopic surgical navigation technology. The indistinct local features of biological tissues in laparoscopic image pose challenges for image segmentation. To address this issue, we develop an image segmentation network tailored for laparoscopic surgery. Firstly, we introduce the Mixed Attention Enhancement (MAE) module that sequentially conducts the Channel Attention Enhancement (CAE) module and the Global Feature Enhancement (GFE) module linked in series. The CAE module enhances the network’s perception of prominent channels, allowing feature maps to exhibit clear local features. The GFE module is capable of extracting global features from both the height and width dimensions of images and integrating them into three-dimensional features. This enhancement improves the network’s ability to capture global features, thereby facilitating the inference of regions with indistinct local features. Secondly, we propose the Multi-scale Feature Fusion (MFF) module. This module expands the feature map into various scales, further enlarging the network’s receptive field and enhancing perception of features at multiple scales. In addition, we tested the proposed network on the EndoVis 2018 and a human minimally invasive liver resection image segmentation dataset, comparing it against six other advanced image segmentation networks. The comparative test results demonstrate that the proposed network achieves the most advanced performance on both datasets, proving its potential in improving surgical image segmentation outcome. The codes of MAMNet are available at: https://github.com/Pang1234567/MAMNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信