Tarik El Ghalbzouri , Tarek El Bardouni , Jaafar El Bakkali
{"title":"基于DoseCalcs平台的新型网格型成年男性和女性计算模型更新I-131内部剂量学系数","authors":"Tarik El Ghalbzouri , Tarek El Bardouni , Jaafar El Bakkali","doi":"10.1016/j.radmeas.2025.107479","DOIUrl":null,"url":null,"abstract":"<div><div>The use of radionuclides in nuclear medicine, both for diagnostic and therapeutic purposes, represents a cornerstone of modern cancer treatment, particularly when utilizing iodine-131. When iodine-131 is administered, it is designed to specifically target the thyroid gland, delivering maximum radiation energy to the tumor. However, iodine-131 circulates through the bloodstream and reaches various regions in the body, exposing them to radiation. In this context, accurate dosimetry calculations are essential to ensure both the safety and efficacy of the treatment.</div><div>We used the latest mesh-type phantom generations to update existing S-values derived from stylized and voxel-based phantoms, leveraging the enhanced anatomical representation of organs/tissues in the latest phantom models.</div><div>To perform the simulations, we used the Monte Carlo-based DoseCalcs platform, in which we implemented anatomical characteristics such as shape data and chemical composition of regions provided by ICRP Publication 145 and radiation data of I-131 from ICRP Publication 107 to simulate the transport of radiation emitted by I-131 and calculate the corresponding S-values for several source-organ combinations.</div><div>We calculated I-131 S-values for nine source regions and twenty-eight target regions using mesh-type phantoms of adult male and female. When comparing these values with those calculated using voxel-based phantoms, we observed that the two datasets were generally similar for most target<span><math><mo>←</mo></math></span>source combinations. However, notable differences were identified, particularly for distant combinations (e.g., brain <span><math><mo>←</mo></math></span> urinary bladder contents) and adjacent regions such as content and wall combinations. In some cases, the ratio reached up to 4 (e.g., stomach wall <span><math><mo>←</mo></math></span> stomach contents, urinary bladder wall <span><math><mo>←</mo></math></span> urinary bladder contents).</div><div>These results underscore the impact of geometric modifications in mesh-type phantoms, particularly for wall regions, where anatomical representations differ significantly from voxel-based phantoms.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"187 ","pages":"Article 107479"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updating internal dosimetry coefficients of I-131 based on new mesh-type computational phantoms of adult male and female using the DoseCalcs platform\",\"authors\":\"Tarik El Ghalbzouri , Tarek El Bardouni , Jaafar El Bakkali\",\"doi\":\"10.1016/j.radmeas.2025.107479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of radionuclides in nuclear medicine, both for diagnostic and therapeutic purposes, represents a cornerstone of modern cancer treatment, particularly when utilizing iodine-131. When iodine-131 is administered, it is designed to specifically target the thyroid gland, delivering maximum radiation energy to the tumor. However, iodine-131 circulates through the bloodstream and reaches various regions in the body, exposing them to radiation. In this context, accurate dosimetry calculations are essential to ensure both the safety and efficacy of the treatment.</div><div>We used the latest mesh-type phantom generations to update existing S-values derived from stylized and voxel-based phantoms, leveraging the enhanced anatomical representation of organs/tissues in the latest phantom models.</div><div>To perform the simulations, we used the Monte Carlo-based DoseCalcs platform, in which we implemented anatomical characteristics such as shape data and chemical composition of regions provided by ICRP Publication 145 and radiation data of I-131 from ICRP Publication 107 to simulate the transport of radiation emitted by I-131 and calculate the corresponding S-values for several source-organ combinations.</div><div>We calculated I-131 S-values for nine source regions and twenty-eight target regions using mesh-type phantoms of adult male and female. When comparing these values with those calculated using voxel-based phantoms, we observed that the two datasets were generally similar for most target<span><math><mo>←</mo></math></span>source combinations. However, notable differences were identified, particularly for distant combinations (e.g., brain <span><math><mo>←</mo></math></span> urinary bladder contents) and adjacent regions such as content and wall combinations. In some cases, the ratio reached up to 4 (e.g., stomach wall <span><math><mo>←</mo></math></span> stomach contents, urinary bladder wall <span><math><mo>←</mo></math></span> urinary bladder contents).</div><div>These results underscore the impact of geometric modifications in mesh-type phantoms, particularly for wall regions, where anatomical representations differ significantly from voxel-based phantoms.</div></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":\"187 \",\"pages\":\"Article 107479\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448725001088\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448725001088","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Updating internal dosimetry coefficients of I-131 based on new mesh-type computational phantoms of adult male and female using the DoseCalcs platform
The use of radionuclides in nuclear medicine, both for diagnostic and therapeutic purposes, represents a cornerstone of modern cancer treatment, particularly when utilizing iodine-131. When iodine-131 is administered, it is designed to specifically target the thyroid gland, delivering maximum radiation energy to the tumor. However, iodine-131 circulates through the bloodstream and reaches various regions in the body, exposing them to radiation. In this context, accurate dosimetry calculations are essential to ensure both the safety and efficacy of the treatment.
We used the latest mesh-type phantom generations to update existing S-values derived from stylized and voxel-based phantoms, leveraging the enhanced anatomical representation of organs/tissues in the latest phantom models.
To perform the simulations, we used the Monte Carlo-based DoseCalcs platform, in which we implemented anatomical characteristics such as shape data and chemical composition of regions provided by ICRP Publication 145 and radiation data of I-131 from ICRP Publication 107 to simulate the transport of radiation emitted by I-131 and calculate the corresponding S-values for several source-organ combinations.
We calculated I-131 S-values for nine source regions and twenty-eight target regions using mesh-type phantoms of adult male and female. When comparing these values with those calculated using voxel-based phantoms, we observed that the two datasets were generally similar for most targetsource combinations. However, notable differences were identified, particularly for distant combinations (e.g., brain urinary bladder contents) and adjacent regions such as content and wall combinations. In some cases, the ratio reached up to 4 (e.g., stomach wall stomach contents, urinary bladder wall urinary bladder contents).
These results underscore the impact of geometric modifications in mesh-type phantoms, particularly for wall regions, where anatomical representations differ significantly from voxel-based phantoms.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.