{"title":"几种新的置换多项式及其复合逆","authors":"Sartaj Ul Hasan, Ramandeep Kaur","doi":"10.1016/j.ffa.2025.102685","DOIUrl":null,"url":null,"abstract":"<div><div>We focus on permutation polynomials of the form <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>+</mo><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msubsup><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is the finite field with <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> elements, <em>p</em> is a prime number, <em>m</em> is a positive integer, <span><math><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msubsup><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is the relative trace function from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></mrow></msub></math></span> to <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></msub></math></span>, <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is a linearized polynomial over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, and <span><math><mi>s</mi><mo>></mo><mn>1</mn></math></span> is a positive integer. More precisely, we present six new classes of permutation polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> of the aforementioned form: one class over finite fields of even characteristic, three classes over finite fields of odd characteristic, and the remaining two over finite fields of arbitrary characteristic. Furthermore, we show that these classes of permutation polynomials are inequivalent to the known ones of the same form. We also provide explicit expressions for the compositional inverses of each of these classes of permutation polynomials.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102685"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some new classes of permutation polynomials and their compositional inverses\",\"authors\":\"Sartaj Ul Hasan, Ramandeep Kaur\",\"doi\":\"10.1016/j.ffa.2025.102685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We focus on permutation polynomials of the form <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>+</mo><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msubsup><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is the finite field with <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> elements, <em>p</em> is a prime number, <em>m</em> is a positive integer, <span><math><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msubsup><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is the relative trace function from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></mrow></msub></math></span> to <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></msub></math></span>, <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is a linearized polynomial over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, and <span><math><mi>s</mi><mo>></mo><mn>1</mn></math></span> is a positive integer. More precisely, we present six new classes of permutation polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> of the aforementioned form: one class over finite fields of even characteristic, three classes over finite fields of odd characteristic, and the remaining two over finite fields of arbitrary characteristic. Furthermore, we show that these classes of permutation polynomials are inequivalent to the known ones of the same form. We also provide explicit expressions for the compositional inverses of each of these classes of permutation polynomials.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"108 \",\"pages\":\"Article 102685\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001157\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001157","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some new classes of permutation polynomials and their compositional inverses
We focus on permutation polynomials of the form over , where is the finite field with elements, p is a prime number, m is a positive integer, is the relative trace function from to , is a linearized polynomial over , and is a positive integer. More precisely, we present six new classes of permutation polynomials over of the aforementioned form: one class over finite fields of even characteristic, three classes over finite fields of odd characteristic, and the remaining two over finite fields of arbitrary characteristic. Furthermore, we show that these classes of permutation polynomials are inequivalent to the known ones of the same form. We also provide explicit expressions for the compositional inverses of each of these classes of permutation polynomials.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.