共振量子隧穿使等离子体生物传感器成为可能

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Jihye Lee, Yina Wu, Ivan Sinev, Mikhail Masharin, Sotirios Papadopoulos, Eduardo J. C. Dias, Lujun Wang, Ming Lun Tseng, Seunghwan Moon, Jong-Souk Yeo, Lukas Novotny, F. Javier García de Abajo, Hatice Altug
{"title":"共振量子隧穿使等离子体生物传感器成为可能","authors":"Jihye Lee, Yina Wu, Ivan Sinev, Mikhail Masharin, Sotirios Papadopoulos, Eduardo J. C. Dias, Lujun Wang, Ming Lun Tseng, Seunghwan Moon, Jong-Souk Yeo, Lukas Novotny, F. Javier García de Abajo, Hatice Altug","doi":"10.1038/s41566-025-01708-y","DOIUrl":null,"url":null,"abstract":"<p>Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions. An optically resonant, doubly periodic nanowire metasurface serves as a top contact for the junction and provides extremely uniform emission over large areas, amplified by plasmonic nanoantenna modes that simultaneously enhance the spectral and refractive index sensitivity. As a proof of concept, we demonstrate spatially resolved refractometric sensing of nanometre-thick polymer and biomolecule coatings. Our results open exciting prospects based on a disruptive platform for integrated electro-optical biosensors.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"148 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic biosensor enabled by resonant quantum tunnelling\",\"authors\":\"Jihye Lee, Yina Wu, Ivan Sinev, Mikhail Masharin, Sotirios Papadopoulos, Eduardo J. C. Dias, Lujun Wang, Ming Lun Tseng, Seunghwan Moon, Jong-Souk Yeo, Lukas Novotny, F. Javier García de Abajo, Hatice Altug\",\"doi\":\"10.1038/s41566-025-01708-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions. An optically resonant, doubly periodic nanowire metasurface serves as a top contact for the junction and provides extremely uniform emission over large areas, amplified by plasmonic nanoantenna modes that simultaneously enhance the spectral and refractive index sensitivity. As a proof of concept, we demonstrate spatially resolved refractometric sensing of nanometre-thick polymer and biomolecule coatings. Our results open exciting prospects based on a disruptive platform for integrated electro-optical biosensors.</p>\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-025-01708-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01708-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

超表面为光学传感提供了一个理想的平台,因为它们在扩展区域上产生强光场限制和增强,使我们能够识别有机和无机分子的深亚波长层。然而,使用外部光源的要求涉及笨重的设备,阻碍了护理点的应用。本文介绍了一种由量子隧道结提供嵌入式光源的等离子体传感器。光学共振,双周期纳米线超表面作为结的顶部接触,并在大面积上提供极其均匀的发射,通过等离子体纳米天线模式放大,同时增强光谱和折射率灵敏度。作为概念的证明,我们展示了纳米厚聚合物和生物分子涂层的空间分辨折射传感。我们的研究结果为集成光电生物传感器的颠覆性平台开辟了令人兴奋的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasmonic biosensor enabled by resonant quantum tunnelling

Plasmonic biosensor enabled by resonant quantum tunnelling

Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions. An optically resonant, doubly periodic nanowire metasurface serves as a top contact for the junction and provides extremely uniform emission over large areas, amplified by plasmonic nanoantenna modes that simultaneously enhance the spectral and refractive index sensitivity. As a proof of concept, we demonstrate spatially resolved refractometric sensing of nanometre-thick polymer and biomolecule coatings. Our results open exciting prospects based on a disruptive platform for integrated electro-optical biosensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信