{"title":"量子电路合成中捕获离子的多模全局驱动","authors":"Philip Richerme","doi":"10.1088/2058-9565/ade560","DOIUrl":null,"url":null,"abstract":"We study the use of global drives with multiple frequency components to improve the efficiency of trapped ion quantum simulations and computations. We show that such ‘multi-mode’ global drives, when combined with a linear number of single-qubit rotations, generate universal Ising-type interactions with shorter overall runtimes than corresponding two-qubit gate implementations. Further, we show how this framework may be extended to efficiently generate body interactions between any subset n of the ion qubits. Finally, we apply these techniques to encode the Quantum Fourier Transform using quadratically-fewer entangling operations, with quadratically smaller runtime, compared with traditional approaches.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"21 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-mode global driving of trapped ions for quantum circuit synthesis\",\"authors\":\"Philip Richerme\",\"doi\":\"10.1088/2058-9565/ade560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the use of global drives with multiple frequency components to improve the efficiency of trapped ion quantum simulations and computations. We show that such ‘multi-mode’ global drives, when combined with a linear number of single-qubit rotations, generate universal Ising-type interactions with shorter overall runtimes than corresponding two-qubit gate implementations. Further, we show how this framework may be extended to efficiently generate body interactions between any subset n of the ion qubits. Finally, we apply these techniques to encode the Quantum Fourier Transform using quadratically-fewer entangling operations, with quadratically smaller runtime, compared with traditional approaches.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ade560\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ade560","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-mode global driving of trapped ions for quantum circuit synthesis
We study the use of global drives with multiple frequency components to improve the efficiency of trapped ion quantum simulations and computations. We show that such ‘multi-mode’ global drives, when combined with a linear number of single-qubit rotations, generate universal Ising-type interactions with shorter overall runtimes than corresponding two-qubit gate implementations. Further, we show how this framework may be extended to efficiently generate body interactions between any subset n of the ion qubits. Finally, we apply these techniques to encode the Quantum Fourier Transform using quadratically-fewer entangling operations, with quadratically smaller runtime, compared with traditional approaches.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.