通过dna编码文库筛选发现前列腺酸性磷酸酶的高亲和力配体,使靶向癌症治疗成为可能

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Tony Georgiev, Francesca Migliorini, Andrea Ciamarone, Marco Mueller, Ilaria Biancofiore, Pinuccia Faviana, Francesco Bartoli, Young Seo Park Kim, Lucrezia Principi, Ettore Gilardoni, Gabriele Bassi, Nicholas Favalli, Emanuele Puca, Dario Neri, Sebastian Oehler, Samuele Cazzamalli
{"title":"通过dna编码文库筛选发现前列腺酸性磷酸酶的高亲和力配体,使靶向癌症治疗成为可能","authors":"Tony Georgiev, Francesca Migliorini, Andrea Ciamarone, Marco Mueller, Ilaria Biancofiore, Pinuccia Faviana, Francesco Bartoli, Young Seo Park Kim, Lucrezia Principi, Ettore Gilardoni, Gabriele Bassi, Nicholas Favalli, Emanuele Puca, Dario Neri, Sebastian Oehler, Samuele Cazzamalli","doi":"10.1038/s41551-025-01432-6","DOIUrl":null,"url":null,"abstract":"<p>Improving the specificity of prostate cancer treatment requires ligands that bind selectively and with ultra-high affinity to tumour-associated targets absent from healthy tissues. Prostatic acid phosphatase has emerged as an alternative target to prostate-specific membrane antigen, as it is expressed in a broader subset of prostate cancers and is not detected in healthy organs such as the salivary glands and kidneys. Here, to discover selective binders to prostatic acid phosphatase, we constructed two DNA-encoded chemical libraries comprising over 6.7 million small molecules based on proline and phenylalanine scaffolds. Screening against the purified human prostatic acid phosphatase yielded OncoACP3, a small organic ligand with picomolar binding affinity. When radiolabelled with lutetium-177, OncoACP3 selectively accumulated in enzyme-expressing tumours with a long residence time (biological half-life greater than 72 h) and a high tumour-to-blood ratio (&gt;148 at 2 h after administration). Lutetium-177-labelled OncoACP3 cured tumours in mice at low, well-tolerated doses. Its conjugation to the cytotoxic agent monomethyl auristatin E facilitated tumour-selective payload deposition, resulting in potent anti-tumour activity. The modular structure of OncoACP3 supports flexible payload delivery for the targeted treatment of metastatic prostate cancer.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"102 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of high-affinity ligands for prostatic acid phosphatase via DNA-encoded library screening enables targeted cancer therapy\",\"authors\":\"Tony Georgiev, Francesca Migliorini, Andrea Ciamarone, Marco Mueller, Ilaria Biancofiore, Pinuccia Faviana, Francesco Bartoli, Young Seo Park Kim, Lucrezia Principi, Ettore Gilardoni, Gabriele Bassi, Nicholas Favalli, Emanuele Puca, Dario Neri, Sebastian Oehler, Samuele Cazzamalli\",\"doi\":\"10.1038/s41551-025-01432-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Improving the specificity of prostate cancer treatment requires ligands that bind selectively and with ultra-high affinity to tumour-associated targets absent from healthy tissues. Prostatic acid phosphatase has emerged as an alternative target to prostate-specific membrane antigen, as it is expressed in a broader subset of prostate cancers and is not detected in healthy organs such as the salivary glands and kidneys. Here, to discover selective binders to prostatic acid phosphatase, we constructed two DNA-encoded chemical libraries comprising over 6.7 million small molecules based on proline and phenylalanine scaffolds. Screening against the purified human prostatic acid phosphatase yielded OncoACP3, a small organic ligand with picomolar binding affinity. When radiolabelled with lutetium-177, OncoACP3 selectively accumulated in enzyme-expressing tumours with a long residence time (biological half-life greater than 72 h) and a high tumour-to-blood ratio (&gt;148 at 2 h after administration). Lutetium-177-labelled OncoACP3 cured tumours in mice at low, well-tolerated doses. Its conjugation to the cytotoxic agent monomethyl auristatin E facilitated tumour-selective payload deposition, resulting in potent anti-tumour activity. The modular structure of OncoACP3 supports flexible payload delivery for the targeted treatment of metastatic prostate cancer.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01432-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01432-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高前列腺癌治疗的特异性需要配体选择性结合,并且与健康组织中缺乏的肿瘤相关靶点具有超高亲和力。前列腺酸性磷酸酶已成为前列腺特异性膜抗原的替代靶标,因为它在前列腺癌的更广泛亚群中表达,而在健康器官(如唾液腺和肾脏)中未被检测到。为了发现前列腺酸性磷酸酶的选择性结合物,我们构建了两个dna编码的化学文库,包含超过670万个基于脯氨酸和苯丙氨酸支架的小分子。筛选纯化的人前列腺酸性磷酸酶得到OncoACP3,一个具有小摩尔结合亲和力的有机配体。当用黄体-177放射性标记时,OncoACP3选择性地积聚在表达酶的肿瘤中,其停留时间长(生物半衰期大于72小时),肿瘤与血液的比率高(给药后2小时为148)。在小鼠实验中,用低剂量、耐受性良好的镥-177标记的OncoACP3治愈了肿瘤。它与细胞毒剂单甲基aurisatin E的结合促进了肿瘤选择性负载沉积,从而产生有效的抗肿瘤活性。OncoACP3的模块化结构支持灵活的有效载荷递送,用于转移性前列腺癌的靶向治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery of high-affinity ligands for prostatic acid phosphatase via DNA-encoded library screening enables targeted cancer therapy

Discovery of high-affinity ligands for prostatic acid phosphatase via DNA-encoded library screening enables targeted cancer therapy

Improving the specificity of prostate cancer treatment requires ligands that bind selectively and with ultra-high affinity to tumour-associated targets absent from healthy tissues. Prostatic acid phosphatase has emerged as an alternative target to prostate-specific membrane antigen, as it is expressed in a broader subset of prostate cancers and is not detected in healthy organs such as the salivary glands and kidneys. Here, to discover selective binders to prostatic acid phosphatase, we constructed two DNA-encoded chemical libraries comprising over 6.7 million small molecules based on proline and phenylalanine scaffolds. Screening against the purified human prostatic acid phosphatase yielded OncoACP3, a small organic ligand with picomolar binding affinity. When radiolabelled with lutetium-177, OncoACP3 selectively accumulated in enzyme-expressing tumours with a long residence time (biological half-life greater than 72 h) and a high tumour-to-blood ratio (>148 at 2 h after administration). Lutetium-177-labelled OncoACP3 cured tumours in mice at low, well-tolerated doses. Its conjugation to the cytotoxic agent monomethyl auristatin E facilitated tumour-selective payload deposition, resulting in potent anti-tumour activity. The modular structure of OncoACP3 supports flexible payload delivery for the targeted treatment of metastatic prostate cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信