Yuliang Yang, Yuxin Liu, Zhufeng He, Ye Yuan, Lifang Sun, Shuang Jiang, Nan Jia
{"title":"通过元素偏析辅助双晶界钉住实现取向异质镁合金优异的强度-塑性协同","authors":"Yuliang Yang, Yuxin Liu, Zhufeng He, Ye Yuan, Lifang Sun, Shuang Jiang, Nan Jia","doi":"10.1016/j.jmst.2025.06.009","DOIUrl":null,"url":null,"abstract":"The low strength, poor ductility, and limited cold formability of Magnesium (Mg) alloys have restricted their wide application as structural materials. The \"heterostructure\" design is a promising strategy for developing high-performance materials. In this work, four orientation-based heterostructured materials were fabricated by modulating bulk Mg-2.9Y (wt%) alloy to a single-pass strain of 10% for five complete triaxial cyclic compression (TCC) cycles along planes A, B, and C, followed by an additional compression on plane A. This process was combined with the subsequent annealing at 200°C for 1 h, leading to the hard-oriented 10%-5 cycles and 10%-5 cycles-200°C/1 h materials together with the soft-oriented 10%-5 cycles+A and 10%-5 cycles+A-200°C/1 h materials. They were characterized by dense refined twins and fragmented grains embedded in coarse-grained matrix. Compared to the TCC-processed materials, the annealed materials showed more pronounced strengthening. The 10%-5 cycles+A-200°C/1 h material exhibited the optimal combination of strength and ductility, with the periodic segregation of Y atoms at dense twin boundaries strengthening the hard domains and increasing deformation incompatibility between the soft and hard domains. The geometrically necessary dislocations significantly accumulated at the twin boundaries, resulting in pronounced hetero-deformation induced (HDI) strengthening. At high strains, the pinning effect of Y atoms gradually weakened, and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">10</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">&#xAF;</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">}</mo></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 3073 1196.3\" width=\"7.137ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use is=\"true\" xlink:href=\"#MJMAIN-7B\"></use><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1501,0)\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(2072,0)\"><use xlink:href=\"#MJMAIN-32\"></use></g><use is=\"true\" x=\"2572\" xlink:href=\"#MJMAIN-7D\" y=\"0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">10</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">}</mo></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">10</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">}</mo></mrow></math></script></span> twinning was triggered. This also facilitated the activation of non-basal <<em>a</em>> slip systems, providing more persistent HDI hardening and excellent ductility. These findings provide novel insights into the development of high-strength and ductile hexagonal close-packed metallic materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"26 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving excellent strength-ductility synergy in orientation-heterostructured Mg-Y alloy via element segregation-assisted pinning of twin boundary\",\"authors\":\"Yuliang Yang, Yuxin Liu, Zhufeng He, Ye Yuan, Lifang Sun, Shuang Jiang, Nan Jia\",\"doi\":\"10.1016/j.jmst.2025.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low strength, poor ductility, and limited cold formability of Magnesium (Mg) alloys have restricted their wide application as structural materials. The \\\"heterostructure\\\" design is a promising strategy for developing high-performance materials. In this work, four orientation-based heterostructured materials were fabricated by modulating bulk Mg-2.9Y (wt%) alloy to a single-pass strain of 10% for five complete triaxial cyclic compression (TCC) cycles along planes A, B, and C, followed by an additional compression on plane A. This process was combined with the subsequent annealing at 200°C for 1 h, leading to the hard-oriented 10%-5 cycles and 10%-5 cycles-200°C/1 h materials together with the soft-oriented 10%-5 cycles+A and 10%-5 cycles+A-200°C/1 h materials. They were characterized by dense refined twins and fragmented grains embedded in coarse-grained matrix. Compared to the TCC-processed materials, the annealed materials showed more pronounced strengthening. The 10%-5 cycles+A-200°C/1 h material exhibited the optimal combination of strength and ductility, with the periodic segregation of Y atoms at dense twin boundaries strengthening the hard domains and increasing deformation incompatibility between the soft and hard domains. The geometrically necessary dislocations significantly accumulated at the twin boundaries, resulting in pronounced hetero-deformation induced (HDI) strengthening. At high strains, the pinning effect of Y atoms gradually weakened, and <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">{</mo><mn is=\\\"true\\\">10</mn><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">&#xAF;</mo></mover><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">}</mo></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 3073 1196.3\\\" width=\\\"7.137ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use is=\\\"true\\\" xlink:href=\\\"#MJMAIN-7B\\\"></use><g is=\\\"true\\\" transform=\\\"translate(500,0)\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1501,0)\\\"><g is=\\\"true\\\" transform=\\\"translate(35,0)\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(0,198)\\\"><use x=\\\"-70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use><use x=\\\"70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(2072,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use></g><use is=\\\"true\\\" x=\\\"2572\\\" xlink:href=\\\"#MJMAIN-7D\\\" y=\\\"0\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">{</mo><mn is=\\\"true\\\">10</mn><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">¯</mo></mover><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">}</mo></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">{</mo><mn is=\\\"true\\\">10</mn><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">¯</mo></mover><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">}</mo></mrow></math></script></span> twinning was triggered. This also facilitated the activation of non-basal <<em>a</em>> slip systems, providing more persistent HDI hardening and excellent ductility. These findings provide novel insights into the development of high-strength and ductile hexagonal close-packed metallic materials.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.06.009\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.06.009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
镁合金强度低、塑性差、冷成形性有限,制约了其作为结构材料的广泛应用。异质结构设计是开发高性能材料的一种很有前途的策略。在这项工作中,通过将块状Mg-2.9Y (wt%)合金调制到10%的单次应变,沿a面、B面和C面进行五次完整的三轴循环压缩(TCC),然后在a面进行额外的压缩,制备了四种基于取向的异质结构材料。得到硬取向的10%-5次循环和10%-5次循环-200℃/1 h材料,以及软取向的10%-5次循环+A和10%-5次循环+A-200℃/1 h材料。它们的特点是致密的细化孪晶和嵌套在粗晶基体中的破碎晶粒。与tcc处理的材料相比,退火后的材料表现出更明显的强化。在10% ~ 5次循环+ a ~ 200°C/1 h条件下,材料的强度和塑性达到了最佳组合,致密孪晶界处Y原子的周期性偏析强化了硬畴,增加了软、硬畴之间的变形不相容。几何上必要的位错在孪晶界处显著积累,导致明显的异质变形诱导(HDI)强化。在高应变下,Y原子的钉住效应逐渐减弱,触发{101¯2}{101¯2}孪晶。这也促进了非基础<;a>;滑移系统,提供更持久的HDI硬化和优异的延展性。这些发现为高强度和延展性的六方密排金属材料的发展提供了新的见解。
Achieving excellent strength-ductility synergy in orientation-heterostructured Mg-Y alloy via element segregation-assisted pinning of twin boundary
The low strength, poor ductility, and limited cold formability of Magnesium (Mg) alloys have restricted their wide application as structural materials. The "heterostructure" design is a promising strategy for developing high-performance materials. In this work, four orientation-based heterostructured materials were fabricated by modulating bulk Mg-2.9Y (wt%) alloy to a single-pass strain of 10% for five complete triaxial cyclic compression (TCC) cycles along planes A, B, and C, followed by an additional compression on plane A. This process was combined with the subsequent annealing at 200°C for 1 h, leading to the hard-oriented 10%-5 cycles and 10%-5 cycles-200°C/1 h materials together with the soft-oriented 10%-5 cycles+A and 10%-5 cycles+A-200°C/1 h materials. They were characterized by dense refined twins and fragmented grains embedded in coarse-grained matrix. Compared to the TCC-processed materials, the annealed materials showed more pronounced strengthening. The 10%-5 cycles+A-200°C/1 h material exhibited the optimal combination of strength and ductility, with the periodic segregation of Y atoms at dense twin boundaries strengthening the hard domains and increasing deformation incompatibility between the soft and hard domains. The geometrically necessary dislocations significantly accumulated at the twin boundaries, resulting in pronounced hetero-deformation induced (HDI) strengthening. At high strains, the pinning effect of Y atoms gradually weakened, and twinning was triggered. This also facilitated the activation of non-basal <a> slip systems, providing more persistent HDI hardening and excellent ductility. These findings provide novel insights into the development of high-strength and ductile hexagonal close-packed metallic materials.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.