Olivia F Schakel,Ryan K Fritts,Anthony J Zmuda,Sima Setayeshgar,James B McKinlay
{"title":"依赖突变体与其独立祖先的分离稳定了微生物的交叉摄食。","authors":"Olivia F Schakel,Ryan K Fritts,Anthony J Zmuda,Sima Setayeshgar,James B McKinlay","doi":"10.1093/ismejo/wraf131","DOIUrl":null,"url":null,"abstract":"Microbial gene loss is hypothesized to be beneficial when gene function is costly, and the gene product can be replaced via cross-feeding from a neighbor. However, cross-fed metabolites are often only available at low concentrations, limiting the growth rates of gene-loss mutants that are dependent on those metabolites. Here we define conditions that support a loss of function mutant in a three-member bacterial community of (i) N2-utilizing Rhodopseudomonas palustris as an NH4+-excreting producer, (ii) N2-utilizing Vibrio natriegens as the ancestor, and (iii) a V. natriegens N2-utilizaton mutant that is dependent on the producer for NH4+. Using experimental and simulated cocultures, we found that the ancestor outcompeted the mutant due to low NH4+ availability under uniform conditions where both V. natriegens strains have equal access to nutrients. However, spatial structuring that increasingly segregated the mutant from the ancestor, while maintaining access to NH4+ from the producer, allowed the mutant to avoid extinction. Counter to predictions, mutant enrichment under spatially structured conditions did not require a growth rate advantage from gene loss and the mutant coexisted with its ancestor. Thus, cross-feeding can originate from loss-of-function mutations that are otherwise detrimental, provided that the mutant can segregate from a competitive ancestor.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"243 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial cross-feeding stabilized by segregation of a dependent mutant from its independent ancestor.\",\"authors\":\"Olivia F Schakel,Ryan K Fritts,Anthony J Zmuda,Sima Setayeshgar,James B McKinlay\",\"doi\":\"10.1093/ismejo/wraf131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial gene loss is hypothesized to be beneficial when gene function is costly, and the gene product can be replaced via cross-feeding from a neighbor. However, cross-fed metabolites are often only available at low concentrations, limiting the growth rates of gene-loss mutants that are dependent on those metabolites. Here we define conditions that support a loss of function mutant in a three-member bacterial community of (i) N2-utilizing Rhodopseudomonas palustris as an NH4+-excreting producer, (ii) N2-utilizing Vibrio natriegens as the ancestor, and (iii) a V. natriegens N2-utilizaton mutant that is dependent on the producer for NH4+. Using experimental and simulated cocultures, we found that the ancestor outcompeted the mutant due to low NH4+ availability under uniform conditions where both V. natriegens strains have equal access to nutrients. However, spatial structuring that increasingly segregated the mutant from the ancestor, while maintaining access to NH4+ from the producer, allowed the mutant to avoid extinction. Counter to predictions, mutant enrichment under spatially structured conditions did not require a growth rate advantage from gene loss and the mutant coexisted with its ancestor. Thus, cross-feeding can originate from loss-of-function mutations that are otherwise detrimental, provided that the mutant can segregate from a competitive ancestor.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"243 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microbial cross-feeding stabilized by segregation of a dependent mutant from its independent ancestor.
Microbial gene loss is hypothesized to be beneficial when gene function is costly, and the gene product can be replaced via cross-feeding from a neighbor. However, cross-fed metabolites are often only available at low concentrations, limiting the growth rates of gene-loss mutants that are dependent on those metabolites. Here we define conditions that support a loss of function mutant in a three-member bacterial community of (i) N2-utilizing Rhodopseudomonas palustris as an NH4+-excreting producer, (ii) N2-utilizing Vibrio natriegens as the ancestor, and (iii) a V. natriegens N2-utilizaton mutant that is dependent on the producer for NH4+. Using experimental and simulated cocultures, we found that the ancestor outcompeted the mutant due to low NH4+ availability under uniform conditions where both V. natriegens strains have equal access to nutrients. However, spatial structuring that increasingly segregated the mutant from the ancestor, while maintaining access to NH4+ from the producer, allowed the mutant to avoid extinction. Counter to predictions, mutant enrichment under spatially structured conditions did not require a growth rate advantage from gene loss and the mutant coexisted with its ancestor. Thus, cross-feeding can originate from loss-of-function mutations that are otherwise detrimental, provided that the mutant can segregate from a competitive ancestor.