在二维MoS2晶体上稳定的半导体Pt结构实现了超快析氢。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tamás Ollár,Péter Vancsó,Péter Kun,Antal A Koós,Gergely Dobrik,Ekaterina V Sukhanova,Zakhar I Popov,Miklós Németh,Krisztina Frey,Béla Pécz,Péter Nemes-Incze,Chanyong Hwang,József Sándor Pap,Levente Tapasztó
{"title":"在二维MoS2晶体上稳定的半导体Pt结构实现了超快析氢。","authors":"Tamás Ollár,Péter Vancsó,Péter Kun,Antal A Koós,Gergely Dobrik,Ekaterina V Sukhanova,Zakhar I Popov,Miklós Németh,Krisztina Frey,Béla Pécz,Péter Nemes-Incze,Chanyong Hwang,József Sándor Pap,Levente Tapasztó","doi":"10.1002/adma.202504113","DOIUrl":null,"url":null,"abstract":"Metallic platinum is the best and most widely investigated catalyst for hydrogen evolution, yet little is known about Pt in its semiconducting form. Here, it is shown that semiconducting Pt structures with a thickness of only two atomic layers (0.4 nm) can be stabilized on 2D MoS2 crystals. Reducing the thickness of Pt particles below the Fermi wavelength (0.5 nm) opens a sizeable (0.3-0.4 eV) gap in their electronic structure. The resulting electronic structure is qualitatively different from both the metallic bands of larger Pt nanoparticles and the atomic orbitals of Pt single atom catalysts while displaying the highest intrinsic activity among them. Semiconducting Pt bilayers enable H2 production at ten times higher rates (≈1400 H2 s-1 @ η = 100 mV) than Pt single atom catalysts, and match the activity of commercial Pt nanoparticles (Pt /C catalysts) at three orders of magnitude lower Pt loadings.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"17 1","pages":"e2504113"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconducting Pt Structures Stabilized on 2D MoS2 Crystals Enable Ultrafast Hydrogen Evolution.\",\"authors\":\"Tamás Ollár,Péter Vancsó,Péter Kun,Antal A Koós,Gergely Dobrik,Ekaterina V Sukhanova,Zakhar I Popov,Miklós Németh,Krisztina Frey,Béla Pécz,Péter Nemes-Incze,Chanyong Hwang,József Sándor Pap,Levente Tapasztó\",\"doi\":\"10.1002/adma.202504113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallic platinum is the best and most widely investigated catalyst for hydrogen evolution, yet little is known about Pt in its semiconducting form. Here, it is shown that semiconducting Pt structures with a thickness of only two atomic layers (0.4 nm) can be stabilized on 2D MoS2 crystals. Reducing the thickness of Pt particles below the Fermi wavelength (0.5 nm) opens a sizeable (0.3-0.4 eV) gap in their electronic structure. The resulting electronic structure is qualitatively different from both the metallic bands of larger Pt nanoparticles and the atomic orbitals of Pt single atom catalysts while displaying the highest intrinsic activity among them. Semiconducting Pt bilayers enable H2 production at ten times higher rates (≈1400 H2 s-1 @ η = 100 mV) than Pt single atom catalysts, and match the activity of commercial Pt nanoparticles (Pt /C catalysts) at three orders of magnitude lower Pt loadings.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"17 1\",\"pages\":\"e2504113\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202504113\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202504113","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属铂是最好的和被广泛研究的析氢催化剂,但对其半导体形式的铂知之甚少。本研究表明,厚度仅为两个原子层(0.4 nm)的半导体Pt结构可以稳定在二维MoS2晶体上。将铂粒子的厚度减小到费米波长(0.5 nm)以下,会在其电子结构中打开一个相当大的(0.3-0.4 eV)间隙。所得到的电子结构与较大的Pt纳米颗粒的金属能带和Pt单原子催化剂的原子轨道在性质上不同,但表现出最高的本构活性。与单原子Pt催化剂相比,半导体Pt双分子层的产氢速率(≈1400 H2 s-1 @ η = 100 mV)提高了10倍,并且在Pt负载低3个数量级的情况下,其活性与商业Pt纳米颗粒(Pt /C催化剂)相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiconducting Pt Structures Stabilized on 2D MoS2 Crystals Enable Ultrafast Hydrogen Evolution.
Metallic platinum is the best and most widely investigated catalyst for hydrogen evolution, yet little is known about Pt in its semiconducting form. Here, it is shown that semiconducting Pt structures with a thickness of only two atomic layers (0.4 nm) can be stabilized on 2D MoS2 crystals. Reducing the thickness of Pt particles below the Fermi wavelength (0.5 nm) opens a sizeable (0.3-0.4 eV) gap in their electronic structure. The resulting electronic structure is qualitatively different from both the metallic bands of larger Pt nanoparticles and the atomic orbitals of Pt single atom catalysts while displaying the highest intrinsic activity among them. Semiconducting Pt bilayers enable H2 production at ten times higher rates (≈1400 H2 s-1 @ η = 100 mV) than Pt single atom catalysts, and match the activity of commercial Pt nanoparticles (Pt /C catalysts) at three orders of magnitude lower Pt loadings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信