{"title":"喹那平和利莫那班可延长秀丽隐杆线虫的寿命。","authors":"Qin He,Shupan Guo,Aolan Zhou,Xin Gong,Wei Cheng,Haiyan Ren","doi":"10.1007/s11357-025-01729-z","DOIUrl":null,"url":null,"abstract":"Aging and age-related disorders are significant global health concerns, driving interest in potential preventative strategies. In this study, we established a high-throughput screening system to reveal the effects of quinacrine and rimonabant on lifespan extension in C. elegans. Mechanistically, quinacrine influences the metabolic and immune pathways through the insulin/insulin-like growth factor (IIS) pathway, as it fails to prolong longevity in IIS pathway mutants while boosting the expression of the downstream gene sod-3. Metabolomic profiling revealed a significant elevation of phosphatidylserine in quinacrine-treated worms. Parallel investigations showed that rimonabant exerts its lifespan-extending effects via the IIS pathway, specifically through the DAF-2/HSF-1 regulatory axis. It promotes longevity of C. elegans by enhancing antioxidant defense and detoxification pathways. Our findings position both quinacrine and rimonabant as promising anti-aging candidates, offering novel mechanistic insights for developing interventions against age-related disorders.","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"235 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quinacrine and rimonabant prolong the life span of Caenorhabditis elegans.\",\"authors\":\"Qin He,Shupan Guo,Aolan Zhou,Xin Gong,Wei Cheng,Haiyan Ren\",\"doi\":\"10.1007/s11357-025-01729-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aging and age-related disorders are significant global health concerns, driving interest in potential preventative strategies. In this study, we established a high-throughput screening system to reveal the effects of quinacrine and rimonabant on lifespan extension in C. elegans. Mechanistically, quinacrine influences the metabolic and immune pathways through the insulin/insulin-like growth factor (IIS) pathway, as it fails to prolong longevity in IIS pathway mutants while boosting the expression of the downstream gene sod-3. Metabolomic profiling revealed a significant elevation of phosphatidylserine in quinacrine-treated worms. Parallel investigations showed that rimonabant exerts its lifespan-extending effects via the IIS pathway, specifically through the DAF-2/HSF-1 regulatory axis. It promotes longevity of C. elegans by enhancing antioxidant defense and detoxification pathways. Our findings position both quinacrine and rimonabant as promising anti-aging candidates, offering novel mechanistic insights for developing interventions against age-related disorders.\",\"PeriodicalId\":12730,\"journal\":{\"name\":\"GeroScience\",\"volume\":\"235 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeroScience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11357-025-01729-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-025-01729-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Quinacrine and rimonabant prolong the life span of Caenorhabditis elegans.
Aging and age-related disorders are significant global health concerns, driving interest in potential preventative strategies. In this study, we established a high-throughput screening system to reveal the effects of quinacrine and rimonabant on lifespan extension in C. elegans. Mechanistically, quinacrine influences the metabolic and immune pathways through the insulin/insulin-like growth factor (IIS) pathway, as it fails to prolong longevity in IIS pathway mutants while boosting the expression of the downstream gene sod-3. Metabolomic profiling revealed a significant elevation of phosphatidylserine in quinacrine-treated worms. Parallel investigations showed that rimonabant exerts its lifespan-extending effects via the IIS pathway, specifically through the DAF-2/HSF-1 regulatory axis. It promotes longevity of C. elegans by enhancing antioxidant defense and detoxification pathways. Our findings position both quinacrine and rimonabant as promising anti-aging candidates, offering novel mechanistic insights for developing interventions against age-related disorders.
GeroScienceMedicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍:
GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.