利用高能电荷转移态促进三元PM6/L8-BO:PC71BM薄膜中的电荷生成。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Zihao Wen, Rongkun Zhou, Zilong Zheng*, Wanzhen Liang* and Yi Zhao*, 
{"title":"利用高能电荷转移态促进三元PM6/L8-BO:PC71BM薄膜中的电荷生成。","authors":"Zihao Wen,&nbsp;Rongkun Zhou,&nbsp;Zilong Zheng*,&nbsp;Wanzhen Liang* and Yi Zhao*,&nbsp;","doi":"10.1021/acs.jpclett.5c01424","DOIUrl":null,"url":null,"abstract":"<p >The ternary strategy represents a promising approach to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the mechanism of the third component in optimizing both the active layer morphology and charge transfer processes remains elusive. Here, we employ a multiscale computational framework integrating first-principles calculations, molecular dynamics (MD), and kinetic Monte Carlo (KMC) simulations to elucidate the critical function of PC<sub>71</sub>BM as a third component in the PM6/L8-BO blend. Our findings reveal that PC<sub>71</sub>BM primarily localizes at the PM6/L8-BO interface, forming an additional high-energy charge transfer (H-CT) state between PM6 and PC<sub>71</sub>BM, alongside the intrinsic low-energy CT (L-CT) state between PM6 and L8-BO. This H-CT establishes a new high-efficiency pathway for PM6 exciton dissociation, succeeding in leading to a much larger charge separation (CS) rate (6 × 10<sup>12</sup> s<sup>–1</sup>) than that (5 × 10<sup>9</sup> s<sup>–1</sup>) via the L-CT state. Furthermore, PC<sub>71</sub>BM incorporation improves electron and hole mobilities as well as ambipolar transport, thereby suppressing charge recombination loss. This work unveils the dual role of PC<sub>71</sub>BM in optimizing interfacial charge-transfer kinetics and bulk carrier transport, offering fundamental guidelines for a third-component design in high-performance ternary OSCs.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 26","pages":"6825–6832"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Charge Generation in Ternary PM6/L8-BO:PC71BM Films through a High-Energy Charge Transfer State\",\"authors\":\"Zihao Wen,&nbsp;Rongkun Zhou,&nbsp;Zilong Zheng*,&nbsp;Wanzhen Liang* and Yi Zhao*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The ternary strategy represents a promising approach to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the mechanism of the third component in optimizing both the active layer morphology and charge transfer processes remains elusive. Here, we employ a multiscale computational framework integrating first-principles calculations, molecular dynamics (MD), and kinetic Monte Carlo (KMC) simulations to elucidate the critical function of PC<sub>71</sub>BM as a third component in the PM6/L8-BO blend. Our findings reveal that PC<sub>71</sub>BM primarily localizes at the PM6/L8-BO interface, forming an additional high-energy charge transfer (H-CT) state between PM6 and PC<sub>71</sub>BM, alongside the intrinsic low-energy CT (L-CT) state between PM6 and L8-BO. This H-CT establishes a new high-efficiency pathway for PM6 exciton dissociation, succeeding in leading to a much larger charge separation (CS) rate (6 × 10<sup>12</sup> s<sup>–1</sup>) than that (5 × 10<sup>9</sup> s<sup>–1</sup>) via the L-CT state. Furthermore, PC<sub>71</sub>BM incorporation improves electron and hole mobilities as well as ambipolar transport, thereby suppressing charge recombination loss. This work unveils the dual role of PC<sub>71</sub>BM in optimizing interfacial charge-transfer kinetics and bulk carrier transport, offering fundamental guidelines for a third-component design in high-performance ternary OSCs.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 26\",\"pages\":\"6825–6832\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01424\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01424","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

三元策略是提高有机太阳能电池(OSCs)功率转换效率(PCE)的一种有前途的方法。然而,第三组分在优化活性层形态和电荷转移过程中的作用机制尚不清楚。本研究采用多尺度计算框架,结合第一性原理计算、分子动力学(MD)和动力学蒙特卡罗(KMC)模拟来阐明PC71BM作为PM6/L8-BO混合物中第三组分的关键功能。研究结果表明,PC71BM主要定位于PM6/L8-BO界面,在PM6和PC71BM之间形成一个附加的高能电荷转移(H-CT)态,以及PM6和L8-BO之间的本征低能CT (L-CT)态。这种H-CT为PM6激子解离建立了一种新的高效途径,成功地通过L-CT态获得了比(5 × 109 s-1)更大的电荷分离(CS)速率(6 × 1012 s-1)。此外,PC71BM的掺入提高了电子和空穴的迁移率以及双极性输运,从而抑制了电荷复合损失。这项工作揭示了PC71BM在优化界面电荷转移动力学和散货船运输中的双重作用,为高性能三元osc的第三组分设计提供了基本指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting Charge Generation in Ternary PM6/L8-BO:PC71BM Films through a High-Energy Charge Transfer State

Boosting Charge Generation in Ternary PM6/L8-BO:PC71BM Films through a High-Energy Charge Transfer State

The ternary strategy represents a promising approach to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the mechanism of the third component in optimizing both the active layer morphology and charge transfer processes remains elusive. Here, we employ a multiscale computational framework integrating first-principles calculations, molecular dynamics (MD), and kinetic Monte Carlo (KMC) simulations to elucidate the critical function of PC71BM as a third component in the PM6/L8-BO blend. Our findings reveal that PC71BM primarily localizes at the PM6/L8-BO interface, forming an additional high-energy charge transfer (H-CT) state between PM6 and PC71BM, alongside the intrinsic low-energy CT (L-CT) state between PM6 and L8-BO. This H-CT establishes a new high-efficiency pathway for PM6 exciton dissociation, succeeding in leading to a much larger charge separation (CS) rate (6 × 1012 s–1) than that (5 × 109 s–1) via the L-CT state. Furthermore, PC71BM incorporation improves electron and hole mobilities as well as ambipolar transport, thereby suppressing charge recombination loss. This work unveils the dual role of PC71BM in optimizing interfacial charge-transfer kinetics and bulk carrier transport, offering fundamental guidelines for a third-component design in high-performance ternary OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信