具有时空后神经元处理和模型自适应交叉棒的40nm CMOS 0.66 mm2 0.49 pJ/SOP SNN处理器。

Jinqiao Yang, Zikai Zhu, Haoming Chu, Anqin Xiao, Yuxiang Huan, Lirong Zheng, Zhuo Zou
{"title":"具有时空后神经元处理和模型自适应交叉棒的40nm CMOS 0.66 mm2 0.49 pJ/SOP SNN处理器。","authors":"Jinqiao Yang, Zikai Zhu, Haoming Chu, Anqin Xiao, Yuxiang Huan, Lirong Zheng, Zhuo Zou","doi":"10.1109/TBCAS.2025.3582246","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a Spiking Neural Network (SNN) processor specifically designed to overcome the limitations of existing parallel architectures in maintaining high energy efficiency and model adaptability in a compact area footprint for Artificial Intelligence of Things (AIoT). This is achieved through two key design features: a Temporal-Spatial Post-Neuron Processing (PoNP) scheme that efficiently reuses membrane potential, maximizes parallelism, and reduces memory bank requirements; and a Model-Adaptive Crossbar design with preconfigured parameters and a dynamic switching mechanism enables processing of various SNN models through operation orchestration without efficiency degradation. Using an 8-way parallel pipeline design, the processor achieves a throughput of 128 Synaptic Operations (SOPs) per cycle, resulting in a 2.8× enhancement in energy efficiency. Fabricated in a 40-nm CMOS process, the chip occupies a compact core area of 0.66 mm<sup>2</sup>. It achieves a power consumption of 6.26 mW, an energy efficiency of 0.49 pJ/SOP, and a throughput of 12.8 GSOPS/s at 0.75 V, 100 MHz. The chip is evaluated using typical spatial, temporal, and temporal-spatial datasets, including MIT-BIH, MNIST, N-MNIST, NavGesture, and SHD. These results demonstrate that our chip achieves best-in-class in terms of energy efficiency and latency compared to state-of-the-art architectures.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 0.66-mm<sup>2</sup> 0.49 pJ/SOP SNN Processor with Temporal-Spatial Post-Neuron-Processing and Model-Adaptive Crossbar in 40-nm CMOS.\",\"authors\":\"Jinqiao Yang, Zikai Zhu, Haoming Chu, Anqin Xiao, Yuxiang Huan, Lirong Zheng, Zhuo Zou\",\"doi\":\"10.1109/TBCAS.2025.3582246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a Spiking Neural Network (SNN) processor specifically designed to overcome the limitations of existing parallel architectures in maintaining high energy efficiency and model adaptability in a compact area footprint for Artificial Intelligence of Things (AIoT). This is achieved through two key design features: a Temporal-Spatial Post-Neuron Processing (PoNP) scheme that efficiently reuses membrane potential, maximizes parallelism, and reduces memory bank requirements; and a Model-Adaptive Crossbar design with preconfigured parameters and a dynamic switching mechanism enables processing of various SNN models through operation orchestration without efficiency degradation. Using an 8-way parallel pipeline design, the processor achieves a throughput of 128 Synaptic Operations (SOPs) per cycle, resulting in a 2.8× enhancement in energy efficiency. Fabricated in a 40-nm CMOS process, the chip occupies a compact core area of 0.66 mm<sup>2</sup>. It achieves a power consumption of 6.26 mW, an energy efficiency of 0.49 pJ/SOP, and a throughput of 12.8 GSOPS/s at 0.75 V, 100 MHz. The chip is evaluated using typical spatial, temporal, and temporal-spatial datasets, including MIT-BIH, MNIST, N-MNIST, NavGesture, and SHD. These results demonstrate that our chip achieves best-in-class in terms of energy efficiency and latency compared to state-of-the-art architectures.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2025.3582246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3582246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种脉冲神经网络(SNN)处理器,专门设计用于克服现有并行架构在保持高能效和模型适应性方面的局限性,用于人工智能物联网(AIoT)。这是通过两个关键的设计特征来实现的:一个时空后神经元处理(PoNP)方案,有效地重用膜电位,最大限度地提高并行性,并减少记忆库的要求;模型自适应Crossbar设计,具有预配置参数和动态切换机制,可以通过操作编排处理各种SNN模型,而不会降低效率。采用8路并行流水线设计,处理器实现每周期128个突触操作(sop)的吞吐量,从而使能效提高2.8倍。该芯片采用40纳米CMOS工艺制造,核心面积紧凑,仅为0.66 mm2。在0.75 V, 100 MHz下,功耗为6.26 mW,能量效率为0.49 pJ/SOP,吞吐量为12.8 GSOPS/s。该芯片使用典型的空间、时间和时空数据集进行评估,包括MIT-BIH、MNIST、N-MNIST、NavGesture和SHD。这些结果表明,与最先进的架构相比,我们的芯片在能效和延迟方面达到了同类最佳水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 0.66-mm2 0.49 pJ/SOP SNN Processor with Temporal-Spatial Post-Neuron-Processing and Model-Adaptive Crossbar in 40-nm CMOS.

This paper presents a Spiking Neural Network (SNN) processor specifically designed to overcome the limitations of existing parallel architectures in maintaining high energy efficiency and model adaptability in a compact area footprint for Artificial Intelligence of Things (AIoT). This is achieved through two key design features: a Temporal-Spatial Post-Neuron Processing (PoNP) scheme that efficiently reuses membrane potential, maximizes parallelism, and reduces memory bank requirements; and a Model-Adaptive Crossbar design with preconfigured parameters and a dynamic switching mechanism enables processing of various SNN models through operation orchestration without efficiency degradation. Using an 8-way parallel pipeline design, the processor achieves a throughput of 128 Synaptic Operations (SOPs) per cycle, resulting in a 2.8× enhancement in energy efficiency. Fabricated in a 40-nm CMOS process, the chip occupies a compact core area of 0.66 mm2. It achieves a power consumption of 6.26 mW, an energy efficiency of 0.49 pJ/SOP, and a throughput of 12.8 GSOPS/s at 0.75 V, 100 MHz. The chip is evaluated using typical spatial, temporal, and temporal-spatial datasets, including MIT-BIH, MNIST, N-MNIST, NavGesture, and SHD. These results demonstrate that our chip achieves best-in-class in terms of energy efficiency and latency compared to state-of-the-art architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信