So Hee Dho, Minjeong Cho, Wonjin Woo, Seolhee Jeong, Lark Kyun Kim
{"title":"半胱天酶作为程序性细胞死亡的主要调控因子:凋亡、焦亡及其他。","authors":"So Hee Dho, Minjeong Cho, Wonjin Woo, Seolhee Jeong, Lark Kyun Kim","doi":"10.1038/s12276-025-01470-9","DOIUrl":null,"url":null,"abstract":"<p><p>Caspases are crucial regulators of programmed cell death, mediating pathways such as apoptosis, pyroptosis, necroptosis and ferroptosis. Their activity is intricately controlled by epigenetic modifications, molecular interactions and post-translational changes, reflecting their central role in cellular homeostasis and disease mechanisms. Dysregulated caspase functions are linked to a wide array of conditions, including cancer, neurodegenerative disorders and inflammatory diseases, establishing their importance as potential therapeutic targets. The roles and regulation of caspases across subcellular compartments and their molecular interactions provide critical insights into the complexity of programmed cell death. Here, this review synthesizes current knowledge on the diverse functions of caspases, offering a comprehensive foundation for exploring innovative therapeutic strategies.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":"1121-1132"},"PeriodicalIF":12.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229594/pdf/","citationCount":"0","resultStr":"{\"title\":\"Caspases as master regulators of programmed cell death: apoptosis, pyroptosis and beyond.\",\"authors\":\"So Hee Dho, Minjeong Cho, Wonjin Woo, Seolhee Jeong, Lark Kyun Kim\",\"doi\":\"10.1038/s12276-025-01470-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Caspases are crucial regulators of programmed cell death, mediating pathways such as apoptosis, pyroptosis, necroptosis and ferroptosis. Their activity is intricately controlled by epigenetic modifications, molecular interactions and post-translational changes, reflecting their central role in cellular homeostasis and disease mechanisms. Dysregulated caspase functions are linked to a wide array of conditions, including cancer, neurodegenerative disorders and inflammatory diseases, establishing their importance as potential therapeutic targets. The roles and regulation of caspases across subcellular compartments and their molecular interactions provide critical insights into the complexity of programmed cell death. Here, this review synthesizes current knowledge on the diverse functions of caspases, offering a comprehensive foundation for exploring innovative therapeutic strategies.</p>\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":\" \",\"pages\":\"1121-1132\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s12276-025-01470-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-025-01470-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Caspases as master regulators of programmed cell death: apoptosis, pyroptosis and beyond.
Caspases are crucial regulators of programmed cell death, mediating pathways such as apoptosis, pyroptosis, necroptosis and ferroptosis. Their activity is intricately controlled by epigenetic modifications, molecular interactions and post-translational changes, reflecting their central role in cellular homeostasis and disease mechanisms. Dysregulated caspase functions are linked to a wide array of conditions, including cancer, neurodegenerative disorders and inflammatory diseases, establishing their importance as potential therapeutic targets. The roles and regulation of caspases across subcellular compartments and their molecular interactions provide critical insights into the complexity of programmed cell death. Here, this review synthesizes current knowledge on the diverse functions of caspases, offering a comprehensive foundation for exploring innovative therapeutic strategies.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.