CRISPR-Cas系统用于病毒检测:文献计量学分析和系统综述。

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Othmane Jeddoub, Nadia Touil, Omar Nyabi, Elmostafa El Fahime, Khalid Ennibi, Jean-Luc Gala, Abdelaziz Benjouad, Lamiae Belayachi
{"title":"CRISPR-Cas系统用于病毒检测:文献计量学分析和系统综述。","authors":"Othmane Jeddoub, Nadia Touil, Omar Nyabi, Elmostafa El Fahime, Khalid Ennibi, Jean-Luc Gala, Abdelaziz Benjouad, Lamiae Belayachi","doi":"10.3390/bios15060379","DOIUrl":null,"url":null,"abstract":"<p><p>Viral infections impose a significant burden on global public health and the economy. This study examines the current state of CRISPR-Cas system research, focusing on their applications in viral detection and their evolution over recent years. A bibliometric analysis and systematic review were conducted using articles published between 2019 and 2024, retrieved from Web of Science, Scopus, and PubMed databases. Out of 2713 identified articles, 194 were included in the analysis. The findings reveal substantial growth in scientific output related to CRISPR-Cas systems, with the United States leading in research and development in this field. The rapid increase in CRISPR-Cas research during this period underscores its immense potential to transform viral diagnostics. With advantages such as speed, precision, and suitability for deployment in resource-limited settings, CRISPR-Cas systems outperform many traditional diagnostic methods. The concerted efforts of scientists worldwide further highlight the promising future of this technology. CRISPR-Cas systems are emerging as a powerful alternative, offering the possibility of expedited and accessible point-of-care testing and paving the way for more equitable and effective diagnostics on a global scale.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190998/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Use of CRISPR-Cas Systems for Viral Detection: A Bibliometric Analysis and Systematic Review.\",\"authors\":\"Othmane Jeddoub, Nadia Touil, Omar Nyabi, Elmostafa El Fahime, Khalid Ennibi, Jean-Luc Gala, Abdelaziz Benjouad, Lamiae Belayachi\",\"doi\":\"10.3390/bios15060379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viral infections impose a significant burden on global public health and the economy. This study examines the current state of CRISPR-Cas system research, focusing on their applications in viral detection and their evolution over recent years. A bibliometric analysis and systematic review were conducted using articles published between 2019 and 2024, retrieved from Web of Science, Scopus, and PubMed databases. Out of 2713 identified articles, 194 were included in the analysis. The findings reveal substantial growth in scientific output related to CRISPR-Cas systems, with the United States leading in research and development in this field. The rapid increase in CRISPR-Cas research during this period underscores its immense potential to transform viral diagnostics. With advantages such as speed, precision, and suitability for deployment in resource-limited settings, CRISPR-Cas systems outperform many traditional diagnostic methods. The concerted efforts of scientists worldwide further highlight the promising future of this technology. CRISPR-Cas systems are emerging as a powerful alternative, offering the possibility of expedited and accessible point-of-care testing and paving the way for more equitable and effective diagnostics on a global scale.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15060379\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060379","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

病毒感染对全球公共卫生和经济造成重大负担。本研究考察了CRISPR-Cas系统的研究现状,重点介绍了它们在病毒检测中的应用及其近年来的发展。对2019年至2024年间发表的文章进行了文献计量学分析和系统评价,检索自Web of Science、Scopus和PubMed数据库。在2713篇鉴定的文章中,有194篇被纳入分析。研究结果显示,与CRISPR-Cas系统相关的科学产出大幅增长,美国在该领域的研究和开发方面处于领先地位。在此期间,CRISPR-Cas研究的快速增长凸显了其改变病毒诊断的巨大潜力。CRISPR-Cas系统具有速度、精度和在资源有限的环境下部署的适用性等优势,优于许多传统的诊断方法。全世界科学家的共同努力进一步突出了这项技术的美好未来。CRISPR-Cas系统正在成为一种强有力的替代方案,提供了快速和可获得的即时检测的可能性,并为在全球范围内进行更公平和有效的诊断铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of CRISPR-Cas Systems for Viral Detection: A Bibliometric Analysis and Systematic Review.

Viral infections impose a significant burden on global public health and the economy. This study examines the current state of CRISPR-Cas system research, focusing on their applications in viral detection and their evolution over recent years. A bibliometric analysis and systematic review were conducted using articles published between 2019 and 2024, retrieved from Web of Science, Scopus, and PubMed databases. Out of 2713 identified articles, 194 were included in the analysis. The findings reveal substantial growth in scientific output related to CRISPR-Cas systems, with the United States leading in research and development in this field. The rapid increase in CRISPR-Cas research during this period underscores its immense potential to transform viral diagnostics. With advantages such as speed, precision, and suitability for deployment in resource-limited settings, CRISPR-Cas systems outperform many traditional diagnostic methods. The concerted efforts of scientists worldwide further highlight the promising future of this technology. CRISPR-Cas systems are emerging as a powerful alternative, offering the possibility of expedited and accessible point-of-care testing and paving the way for more equitable and effective diagnostics on a global scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信