Pasquale Arpaia, Maria Cacciapuoti, Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola, Raissa Schiavoni
{"title":"评价脑电信号预处理增强多尺度模糊熵在阿尔茨海默病检测中的作用。","authors":"Pasquale Arpaia, Maria Cacciapuoti, Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola, Raissa Schiavoni","doi":"10.3390/bios15060374","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer's disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially among EEG systems, and this hinders the adoption of this metric for AD detection. To overcome this issue, this study investigates different preprocessing strategies to make the calculation of MFE less dependent on the specific amplitude characteristics of the EEG signals at hand. This contributes to generalizing and making more robust the adoption of MFE for AD detection. To demonstrate the robustness of the proposed preprocessing methods, binary classification tasks with Support Vector Machines (SVMs), Random Forest (RF), and K-Nearest Neighbor (KNN) classifiers are used. Performance metrics, such as classification accuracy and Matthews Correlation Coefficient (MCC), are employed to assess the results. The methodology is validated on two public EEG datasets. Results show that amplitude transformation, particularly normalization, significantly enhances AD detection, achieving mean classification accuracy values exceeding 80% with an uncertainty of 10% across all classifiers. These results highlight the importance of preprocessing in improving the accuracy and the reliability of EEG-based AD diagnostic tools, offering potential advancements in patient management and treatment planning.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190283/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the Role of EEG Biosignal Preprocessing to Enhance Multiscale Fuzzy Entropy in Alzheimer's Disease Detection.\",\"authors\":\"Pasquale Arpaia, Maria Cacciapuoti, Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola, Raissa Schiavoni\",\"doi\":\"10.3390/bios15060374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer's disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially among EEG systems, and this hinders the adoption of this metric for AD detection. To overcome this issue, this study investigates different preprocessing strategies to make the calculation of MFE less dependent on the specific amplitude characteristics of the EEG signals at hand. This contributes to generalizing and making more robust the adoption of MFE for AD detection. To demonstrate the robustness of the proposed preprocessing methods, binary classification tasks with Support Vector Machines (SVMs), Random Forest (RF), and K-Nearest Neighbor (KNN) classifiers are used. Performance metrics, such as classification accuracy and Matthews Correlation Coefficient (MCC), are employed to assess the results. The methodology is validated on two public EEG datasets. Results show that amplitude transformation, particularly normalization, significantly enhances AD detection, achieving mean classification accuracy values exceeding 80% with an uncertainty of 10% across all classifiers. These results highlight the importance of preprocessing in improving the accuracy and the reliability of EEG-based AD diagnostic tools, offering potential advancements in patient management and treatment planning.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190283/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15060374\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Assessing the Role of EEG Biosignal Preprocessing to Enhance Multiscale Fuzzy Entropy in Alzheimer's Disease Detection.
Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer's disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially among EEG systems, and this hinders the adoption of this metric for AD detection. To overcome this issue, this study investigates different preprocessing strategies to make the calculation of MFE less dependent on the specific amplitude characteristics of the EEG signals at hand. This contributes to generalizing and making more robust the adoption of MFE for AD detection. To demonstrate the robustness of the proposed preprocessing methods, binary classification tasks with Support Vector Machines (SVMs), Random Forest (RF), and K-Nearest Neighbor (KNN) classifiers are used. Performance metrics, such as classification accuracy and Matthews Correlation Coefficient (MCC), are employed to assess the results. The methodology is validated on two public EEG datasets. Results show that amplitude transformation, particularly normalization, significantly enhances AD detection, achieving mean classification accuracy values exceeding 80% with an uncertainty of 10% across all classifiers. These results highlight the importance of preprocessing in improving the accuracy and the reliability of EEG-based AD diagnostic tools, offering potential advancements in patient management and treatment planning.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.