Ping Sun, Chunlei Gao, Zhe Chen, Siyu Wang, Gang Li, Mingming Luan, Yaoguang Wang
{"title":"一种智能纳米探针,用于视觉研究周期性DOX释放对p53通路和通路相关分子的激活作用。","authors":"Ping Sun, Chunlei Gao, Zhe Chen, Siyu Wang, Gang Li, Mingming Luan, Yaoguang Wang","doi":"10.3390/bios15060383","DOIUrl":null,"url":null,"abstract":"<p><p>Developing appropriate methods for real-time in situ investigation of how drugs influence signaling pathways and related biomolecules holds enormous potential for helping to provide an understanding of how anticancer drugs exert their effects. Herein, we report a smart nanoprobe, PDA-MB (DOX)-Pep, constructed on the basis of polydopamine nanoparticles (PDA NPs) modified with a dense shell of molecular beacon (MB) with embedded doxorubicin (DOX) and peptide, which can respond specifically to miRNA-34a and Caspase-3 targets. Intracellular experiments demonstrated that, in comparison to the control nanoprobe PDA-MB-Pep, the smart nanoprobe could selectively respond to miRNA-34a, facilitating the release of the embedded DOX. The released DOX subsequently activated the p53 pathway, which further upregulated miRNA-34a expression, leading to additional DOX release. This initiated a cyclical process involving the probe's response to miRNA-34a, DOX release, p53 activation, and miRNA-34a upregulation, ultimately enhancing cell apoptosis and increasing Caspase-3 expression. The designed smart nanoprobe offers a visual approach to explore how anticancer drugs influence signaling pathways and related molecules at the cellular level.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191000/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Smart Nanoprobe for Visually Investigating the Activation Effect of Cyclical DOX Release on the p53 Pathway and Pathway-Related Molecules.\",\"authors\":\"Ping Sun, Chunlei Gao, Zhe Chen, Siyu Wang, Gang Li, Mingming Luan, Yaoguang Wang\",\"doi\":\"10.3390/bios15060383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing appropriate methods for real-time in situ investigation of how drugs influence signaling pathways and related biomolecules holds enormous potential for helping to provide an understanding of how anticancer drugs exert their effects. Herein, we report a smart nanoprobe, PDA-MB (DOX)-Pep, constructed on the basis of polydopamine nanoparticles (PDA NPs) modified with a dense shell of molecular beacon (MB) with embedded doxorubicin (DOX) and peptide, which can respond specifically to miRNA-34a and Caspase-3 targets. Intracellular experiments demonstrated that, in comparison to the control nanoprobe PDA-MB-Pep, the smart nanoprobe could selectively respond to miRNA-34a, facilitating the release of the embedded DOX. The released DOX subsequently activated the p53 pathway, which further upregulated miRNA-34a expression, leading to additional DOX release. This initiated a cyclical process involving the probe's response to miRNA-34a, DOX release, p53 activation, and miRNA-34a upregulation, ultimately enhancing cell apoptosis and increasing Caspase-3 expression. The designed smart nanoprobe offers a visual approach to explore how anticancer drugs influence signaling pathways and related molecules at the cellular level.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191000/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15060383\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060383","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Smart Nanoprobe for Visually Investigating the Activation Effect of Cyclical DOX Release on the p53 Pathway and Pathway-Related Molecules.
Developing appropriate methods for real-time in situ investigation of how drugs influence signaling pathways and related biomolecules holds enormous potential for helping to provide an understanding of how anticancer drugs exert their effects. Herein, we report a smart nanoprobe, PDA-MB (DOX)-Pep, constructed on the basis of polydopamine nanoparticles (PDA NPs) modified with a dense shell of molecular beacon (MB) with embedded doxorubicin (DOX) and peptide, which can respond specifically to miRNA-34a and Caspase-3 targets. Intracellular experiments demonstrated that, in comparison to the control nanoprobe PDA-MB-Pep, the smart nanoprobe could selectively respond to miRNA-34a, facilitating the release of the embedded DOX. The released DOX subsequently activated the p53 pathway, which further upregulated miRNA-34a expression, leading to additional DOX release. This initiated a cyclical process involving the probe's response to miRNA-34a, DOX release, p53 activation, and miRNA-34a upregulation, ultimately enhancing cell apoptosis and increasing Caspase-3 expression. The designed smart nanoprobe offers a visual approach to explore how anticancer drugs influence signaling pathways and related molecules at the cellular level.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.