Christopher Animashaun, Abdellatif Ait Lahcen, Gymama Slaughter
{"title":"金纳米颗粒增强的非酶乳酸传感分子印迹聚合物电极。","authors":"Christopher Animashaun, Abdellatif Ait Lahcen, Gymama Slaughter","doi":"10.3390/bios15060384","DOIUrl":null,"url":null,"abstract":"<p><p>We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gold Nanoparticle-Enhanced Molecularly Imprinted Polymer Electrode for Non-Enzymatic Lactate Sensing.\",\"authors\":\"Christopher Animashaun, Abdellatif Ait Lahcen, Gymama Slaughter\",\"doi\":\"10.3390/bios15060384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15060384\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060384","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Gold Nanoparticle-Enhanced Molecularly Imprinted Polymer Electrode for Non-Enzymatic Lactate Sensing.
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.