快速检测食源性毒素的电化学传感器平台。

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Kundan Kumar Mishra, Krupa M Thakkar, Vikram Narayanan Dhamu, Sriram Muthukumar, Shalini Prasad
{"title":"快速检测食源性毒素的电化学传感器平台。","authors":"Kundan Kumar Mishra, Krupa M Thakkar, Vikram Narayanan Dhamu, Sriram Muthukumar, Shalini Prasad","doi":"10.3390/bios15060361","DOIUrl":null,"url":null,"abstract":"<p><p>Zearalenone (ZEA), a potent mycotoxin commonly found in contaminated grains, presents a serious threat to food safety and public health. Conventional detection methods, including culture-based assays and laboratory-bound analytical tools, are often time-consuming, require specialized infrastructure, and lack portability, limiting their utility for rapid, on-site screening. In response, this study introduces a compact, real-time electrochemical sensing platform for the swift and selective detection of ZEA in corn flour matrices. Utilizing a non-faradaic, label-free approach based on Electrochemical Impedance Spectroscopy (EIS), the sensor leverages ZEA-specific antibodies to achieve rapid detection within 5 min. The platform demonstrates a low detection limit of 0.05 ng/mL, with a broad dynamic range from 0.1 ng/mL to 25.6 ng/mL. Reproducibility tests confirm consistent performance, with both inter- and intra-assay variation remaining under a 20% coefficient of variation (%CV). Comparative evaluation with standard benchtop systems underscores its accuracy and field applicability. This portable and user-friendly device provides a powerful tool for real-time mycotoxin monitoring, offering significant potential for improving food safety practices and enabling point-of-need testing in resource-limited settings.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191336/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Sensor Platform for Rapid Detection of Foodborne Toxins.\",\"authors\":\"Kundan Kumar Mishra, Krupa M Thakkar, Vikram Narayanan Dhamu, Sriram Muthukumar, Shalini Prasad\",\"doi\":\"10.3390/bios15060361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zearalenone (ZEA), a potent mycotoxin commonly found in contaminated grains, presents a serious threat to food safety and public health. Conventional detection methods, including culture-based assays and laboratory-bound analytical tools, are often time-consuming, require specialized infrastructure, and lack portability, limiting their utility for rapid, on-site screening. In response, this study introduces a compact, real-time electrochemical sensing platform for the swift and selective detection of ZEA in corn flour matrices. Utilizing a non-faradaic, label-free approach based on Electrochemical Impedance Spectroscopy (EIS), the sensor leverages ZEA-specific antibodies to achieve rapid detection within 5 min. The platform demonstrates a low detection limit of 0.05 ng/mL, with a broad dynamic range from 0.1 ng/mL to 25.6 ng/mL. Reproducibility tests confirm consistent performance, with both inter- and intra-assay variation remaining under a 20% coefficient of variation (%CV). Comparative evaluation with standard benchtop systems underscores its accuracy and field applicability. This portable and user-friendly device provides a powerful tool for real-time mycotoxin monitoring, offering significant potential for improving food safety practices and enabling point-of-need testing in resource-limited settings.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191336/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15060361\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060361","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

玉米赤霉烯酮(ZEA)是一种常见于受污染谷物中的强效霉菌毒素,对食品安全和公众健康构成严重威胁。传统的检测方法,包括基于培养的检测和实验室限制的分析工具,通常耗时,需要专门的基础设施,缺乏可移植性,限制了它们在快速现场筛选中的效用。为此,本研究引入了一种紧凑、实时的电化学传感平台,用于快速、选择性地检测玉米粉基质中的ZEA。该传感器利用基于电化学阻抗谱(EIS)的非法拉第无标记方法,利用zea特异性抗体在5分钟内实现快速检测。该平台具有0.05 ng/mL的低检测限,0.1 ng/mL至25.6 ng/mL的宽动态范围。重复性试验证实了一致的性能,测定间和测定内的变异均保持在20%变异系数(%CV)以下。与标准台式系统的对比评估强调了其准确性和现场适用性。这种便携式和用户友好的设备为实时真菌毒素监测提供了强大的工具,为改善食品安全做法和在资源有限的情况下实现定点检测提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical Sensor Platform for Rapid Detection of Foodborne Toxins.

Zearalenone (ZEA), a potent mycotoxin commonly found in contaminated grains, presents a serious threat to food safety and public health. Conventional detection methods, including culture-based assays and laboratory-bound analytical tools, are often time-consuming, require specialized infrastructure, and lack portability, limiting their utility for rapid, on-site screening. In response, this study introduces a compact, real-time electrochemical sensing platform for the swift and selective detection of ZEA in corn flour matrices. Utilizing a non-faradaic, label-free approach based on Electrochemical Impedance Spectroscopy (EIS), the sensor leverages ZEA-specific antibodies to achieve rapid detection within 5 min. The platform demonstrates a low detection limit of 0.05 ng/mL, with a broad dynamic range from 0.1 ng/mL to 25.6 ng/mL. Reproducibility tests confirm consistent performance, with both inter- and intra-assay variation remaining under a 20% coefficient of variation (%CV). Comparative evaluation with standard benchtop systems underscores its accuracy and field applicability. This portable and user-friendly device provides a powerful tool for real-time mycotoxin monitoring, offering significant potential for improving food safety practices and enabling point-of-need testing in resource-limited settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信