{"title":"饮用水中的微塑料和纳米塑料:威胁还是炒作?最先进的风险分析和方法。","authors":"Andrea G Capodaglio","doi":"10.3390/jox15030085","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic (MP) contamination affects all environmental media, even in remote, unpopulated regions of the globe. Many studies have addressed this issue under various aspects; however, actual and definitive evidence that MPs are a cause of human health risk in actual environmental conditions has not been provided. MP decomposition generates smaller nanoplastics (NPs) with different properties, closer to engineered nanoparticles than to MP. Their detection is more complex and laborious than MP's, and, as such, their fate and effects are still poorly studied. Advanced technologies to remove MP/NPs from supply water are being investigated, but current evidence indicates that conventional drinking water treatment facilities efficiently remove a major part of MPs, at least as far as sizes greater than 20 µm. Notwithstanding recent developments in MP/NP classification and detection techniques, at the moment, very few studies specifically address NPs, which, therefore, deserve more targeted investigation. This paper addresses MPs and NPs in drinking water, examining recent current literature on their presence and state-of-the-art in risk assessment and toxicology. The paper also critically overviews treatment technologies for their removal and discusses the present knowledge gap and possible approaches to this widespread issue.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro- and Nano-Plastics in Drinking Water: Threat or Hype? Critical State-of-the-Art Analysis of Risks and Approaches.\",\"authors\":\"Andrea G Capodaglio\",\"doi\":\"10.3390/jox15030085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastic (MP) contamination affects all environmental media, even in remote, unpopulated regions of the globe. Many studies have addressed this issue under various aspects; however, actual and definitive evidence that MPs are a cause of human health risk in actual environmental conditions has not been provided. MP decomposition generates smaller nanoplastics (NPs) with different properties, closer to engineered nanoparticles than to MP. Their detection is more complex and laborious than MP's, and, as such, their fate and effects are still poorly studied. Advanced technologies to remove MP/NPs from supply water are being investigated, but current evidence indicates that conventional drinking water treatment facilities efficiently remove a major part of MPs, at least as far as sizes greater than 20 µm. Notwithstanding recent developments in MP/NP classification and detection techniques, at the moment, very few studies specifically address NPs, which, therefore, deserve more targeted investigation. This paper addresses MPs and NPs in drinking water, examining recent current literature on their presence and state-of-the-art in risk assessment and toxicology. The paper also critically overviews treatment technologies for their removal and discusses the present knowledge gap and possible approaches to this widespread issue.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15030085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15030085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Micro- and Nano-Plastics in Drinking Water: Threat or Hype? Critical State-of-the-Art Analysis of Risks and Approaches.
Microplastic (MP) contamination affects all environmental media, even in remote, unpopulated regions of the globe. Many studies have addressed this issue under various aspects; however, actual and definitive evidence that MPs are a cause of human health risk in actual environmental conditions has not been provided. MP decomposition generates smaller nanoplastics (NPs) with different properties, closer to engineered nanoparticles than to MP. Their detection is more complex and laborious than MP's, and, as such, their fate and effects are still poorly studied. Advanced technologies to remove MP/NPs from supply water are being investigated, but current evidence indicates that conventional drinking water treatment facilities efficiently remove a major part of MPs, at least as far as sizes greater than 20 µm. Notwithstanding recent developments in MP/NP classification and detection techniques, at the moment, very few studies specifically address NPs, which, therefore, deserve more targeted investigation. This paper addresses MPs and NPs in drinking water, examining recent current literature on their presence and state-of-the-art in risk assessment and toxicology. The paper also critically overviews treatment technologies for their removal and discusses the present knowledge gap and possible approaches to this widespread issue.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.