{"title":"亚急性吸入暴露于臭氧对小鼠各器官造成损伤。","authors":"Peiwen Wang, Yuan Lu, Kuikui Lu, Daxiao Xie, Min Ling, Luoding Lu, Weiyong Chen, Yu Wu, Qizhan Liu, Qian Bian, Tian Xiao","doi":"10.3390/toxics13060468","DOIUrl":null,"url":null,"abstract":"<p><p>Ambient ozone (O<sub>3</sub>) pollution, which has become a global problem, is associated with damage to various biological systems, as determined by many studies. However, there is limited experimental evidence regarding the systemic damage induced by O<sub>3</sub> exposure, and there are few associated studies on mice. In the present investigation, we constructed a subacute C57BL/6J female mouse model involving exposure to 0, 0.5, 1, or 2 ppm O<sub>3</sub> for 28 days (3 h/day). Body weights, pulmonary function, hematology, serum biochemistry, inflammatory factors, and injuries to various organs were assessed for O<sub>3</sub>-exposed mice. After O<sub>3</sub> exposure, especially to 2 ppm O<sub>3</sub>, mice showed a loss of body weight, abnormal glucose and lipid metabolism, respiratory and nervous system injuries, an inflammatory response, and pathological changes, which supported the data reported for epidemiology studies. In addition, the IL-6 levels in bronchoalveolar lavage fluid (BALF), the lungs, the livers, the kidneys, and the brains were increased, which indicated that IL-6 was associated with the damage to various organs induced by O<sub>3</sub> exposure. The present report highlights the pathological injury to various organs and provides a basis for further studies of the molecular mechanisms associated with O<sub>3</sub> exposure.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Subacute Inhalation Exposure of Mice to Ozone Induces Damage to Various Organs.\",\"authors\":\"Peiwen Wang, Yuan Lu, Kuikui Lu, Daxiao Xie, Min Ling, Luoding Lu, Weiyong Chen, Yu Wu, Qizhan Liu, Qian Bian, Tian Xiao\",\"doi\":\"10.3390/toxics13060468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ambient ozone (O<sub>3</sub>) pollution, which has become a global problem, is associated with damage to various biological systems, as determined by many studies. However, there is limited experimental evidence regarding the systemic damage induced by O<sub>3</sub> exposure, and there are few associated studies on mice. In the present investigation, we constructed a subacute C57BL/6J female mouse model involving exposure to 0, 0.5, 1, or 2 ppm O<sub>3</sub> for 28 days (3 h/day). Body weights, pulmonary function, hematology, serum biochemistry, inflammatory factors, and injuries to various organs were assessed for O<sub>3</sub>-exposed mice. After O<sub>3</sub> exposure, especially to 2 ppm O<sub>3</sub>, mice showed a loss of body weight, abnormal glucose and lipid metabolism, respiratory and nervous system injuries, an inflammatory response, and pathological changes, which supported the data reported for epidemiology studies. In addition, the IL-6 levels in bronchoalveolar lavage fluid (BALF), the lungs, the livers, the kidneys, and the brains were increased, which indicated that IL-6 was associated with the damage to various organs induced by O<sub>3</sub> exposure. The present report highlights the pathological injury to various organs and provides a basis for further studies of the molecular mechanisms associated with O<sub>3</sub> exposure.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13060468\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13060468","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Subacute Inhalation Exposure of Mice to Ozone Induces Damage to Various Organs.
Ambient ozone (O3) pollution, which has become a global problem, is associated with damage to various biological systems, as determined by many studies. However, there is limited experimental evidence regarding the systemic damage induced by O3 exposure, and there are few associated studies on mice. In the present investigation, we constructed a subacute C57BL/6J female mouse model involving exposure to 0, 0.5, 1, or 2 ppm O3 for 28 days (3 h/day). Body weights, pulmonary function, hematology, serum biochemistry, inflammatory factors, and injuries to various organs were assessed for O3-exposed mice. After O3 exposure, especially to 2 ppm O3, mice showed a loss of body weight, abnormal glucose and lipid metabolism, respiratory and nervous system injuries, an inflammatory response, and pathological changes, which supported the data reported for epidemiology studies. In addition, the IL-6 levels in bronchoalveolar lavage fluid (BALF), the lungs, the livers, the kidneys, and the brains were increased, which indicated that IL-6 was associated with the damage to various organs induced by O3 exposure. The present report highlights the pathological injury to various organs and provides a basis for further studies of the molecular mechanisms associated with O3 exposure.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.