Anna S Longwell, Farzana Hossain, Seenivasan Subbiah, Adcharee Karnjanapiboonwong, Jamie G Suski, Todd A Anderson
{"title":"无氟消防泡沫Fomtec Enviro USP对北山齿鹑(Colinus virginanus)的慢性生殖毒性","authors":"Anna S Longwell, Farzana Hossain, Seenivasan Subbiah, Adcharee Karnjanapiboonwong, Jamie G Suski, Todd A Anderson","doi":"10.3390/toxics13060474","DOIUrl":null,"url":null,"abstract":"<p><p>Long-chain per- and polyfluoroalkyl substances (PFASs) have been the standard active chemicals in aqueous film-forming foams (AFFFs or firefighting foams) since the mid-1960s. Some characteristics of PFASs are environmental persistence and bioaccumulation. Non-fluorinated firefighting foams are an alternative to potentially reducing the ecological/environmental impact of PFAS-based AFFF. We used northern bobwhite (NOBO, <i>Colinus virginianus</i>) to test the ecotoxicity of one candidate (non-fluorinated) foam. Fomtec Enviro USP is a fluorine-free commercial AFFF used primarily for extinguishing Class B hydrocarbon fuel fires. Following a photostimulation phase to initiate egg laying, breeding pairs were exposed for 60+ days to 0.01%, 0.1%, and 0.25% Fomtec in drinking water. The endpoints of the study included survival, growth, and reproductive output. Water consumption was evaluated and used to determine the average daily intake (ADI) based on Fomtec components: sodium dodecyl sulfate or SDS (0.05, 0.15, and 0.32 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively) and diethylene glycol monobutyl ether or DGMBE (0.49, 6.54, and 18.37 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively). Over the 60 days, control females laid an average of 59 ± 0.8 eggs compared to 28 ± 9 (0.01% Fomtec exposure), 51 ± 4 (0.1% Fomtec exposure), and 56 ± 2 (0.25% Fomtec exposure); the number of eggs produced per hen was affected by exposure to the lowest Fomtec concentration. Hatching success was not significantly different among treatment groups, and it was within normal reproduction parameters for quail. Our findings in this avian model help to fill data gaps for non-fluorinated foam products, many of which have little toxicological information.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chronic Reproductive Toxicity of Fomtec Enviro USP, a Fluorine-Free Firefighting Foam, to Northern Bobwhite (<i>Colinus virginianus</i>).\",\"authors\":\"Anna S Longwell, Farzana Hossain, Seenivasan Subbiah, Adcharee Karnjanapiboonwong, Jamie G Suski, Todd A Anderson\",\"doi\":\"10.3390/toxics13060474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-chain per- and polyfluoroalkyl substances (PFASs) have been the standard active chemicals in aqueous film-forming foams (AFFFs or firefighting foams) since the mid-1960s. Some characteristics of PFASs are environmental persistence and bioaccumulation. Non-fluorinated firefighting foams are an alternative to potentially reducing the ecological/environmental impact of PFAS-based AFFF. We used northern bobwhite (NOBO, <i>Colinus virginianus</i>) to test the ecotoxicity of one candidate (non-fluorinated) foam. Fomtec Enviro USP is a fluorine-free commercial AFFF used primarily for extinguishing Class B hydrocarbon fuel fires. Following a photostimulation phase to initiate egg laying, breeding pairs were exposed for 60+ days to 0.01%, 0.1%, and 0.25% Fomtec in drinking water. The endpoints of the study included survival, growth, and reproductive output. Water consumption was evaluated and used to determine the average daily intake (ADI) based on Fomtec components: sodium dodecyl sulfate or SDS (0.05, 0.15, and 0.32 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively) and diethylene glycol monobutyl ether or DGMBE (0.49, 6.54, and 18.37 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively). Over the 60 days, control females laid an average of 59 ± 0.8 eggs compared to 28 ± 9 (0.01% Fomtec exposure), 51 ± 4 (0.1% Fomtec exposure), and 56 ± 2 (0.25% Fomtec exposure); the number of eggs produced per hen was affected by exposure to the lowest Fomtec concentration. Hatching success was not significantly different among treatment groups, and it was within normal reproduction parameters for quail. Our findings in this avian model help to fill data gaps for non-fluorinated foam products, many of which have little toxicological information.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13060474\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13060474","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chronic Reproductive Toxicity of Fomtec Enviro USP, a Fluorine-Free Firefighting Foam, to Northern Bobwhite (Colinus virginianus).
Long-chain per- and polyfluoroalkyl substances (PFASs) have been the standard active chemicals in aqueous film-forming foams (AFFFs or firefighting foams) since the mid-1960s. Some characteristics of PFASs are environmental persistence and bioaccumulation. Non-fluorinated firefighting foams are an alternative to potentially reducing the ecological/environmental impact of PFAS-based AFFF. We used northern bobwhite (NOBO, Colinus virginianus) to test the ecotoxicity of one candidate (non-fluorinated) foam. Fomtec Enviro USP is a fluorine-free commercial AFFF used primarily for extinguishing Class B hydrocarbon fuel fires. Following a photostimulation phase to initiate egg laying, breeding pairs were exposed for 60+ days to 0.01%, 0.1%, and 0.25% Fomtec in drinking water. The endpoints of the study included survival, growth, and reproductive output. Water consumption was evaluated and used to determine the average daily intake (ADI) based on Fomtec components: sodium dodecyl sulfate or SDS (0.05, 0.15, and 0.32 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively) and diethylene glycol monobutyl ether or DGMBE (0.49, 6.54, and 18.37 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively). Over the 60 days, control females laid an average of 59 ± 0.8 eggs compared to 28 ± 9 (0.01% Fomtec exposure), 51 ± 4 (0.1% Fomtec exposure), and 56 ± 2 (0.25% Fomtec exposure); the number of eggs produced per hen was affected by exposure to the lowest Fomtec concentration. Hatching success was not significantly different among treatment groups, and it was within normal reproduction parameters for quail. Our findings in this avian model help to fill data gaps for non-fluorinated foam products, many of which have little toxicological information.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.