Marta Rivas, Mariana Pichel, Vanesa Zylberman, Mariana Colonna, Marina Valerio, Carolina Massa, Romina Pardo, Andrés E Ciocchini, Santiago Sanguineti, Ian Roubicek, Linus Spatz, Fernando Alberto Goldbaum
{"title":"志贺毒素多克隆中和抗体治疗溶血性尿毒症综合征","authors":"Marta Rivas, Mariana Pichel, Vanesa Zylberman, Mariana Colonna, Marina Valerio, Carolina Massa, Romina Pardo, Andrés E Ciocchini, Santiago Sanguineti, Ian Roubicek, Linus Spatz, Fernando Alberto Goldbaum","doi":"10.3390/toxins17060282","DOIUrl":null,"url":null,"abstract":"<p><p>Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury (AKI). Shiga toxin (Stx)-producing <i>Escherichia coli</i>-associated HUS (STEC-HUS) is one of the leading causes of AKI in children. Approximately 1.5 to 3% of children die during the acute phase, and about 30% experience long-term renal sequelae. Argentina has the highest incidence of STEC-HUS globally. Given the prominent role of Stx in its pathophysiology, STEC-HUS is considered more of a toxemia than a bacterial disease. Stx transport occurs before and after the STEC-HUS onset, allowing for the distinction between an early toxemia phase and an advanced toxemia phase. In this review, we present our efforts to develop INM004, an anti-Stx treatment aimed at ameliorating or preventing the clinical consequences of STEC-HUS. We describe the protein engineering that facilitated this development and the clinical path to demonstrate the safety and efficacy of INM004. This immunotherapy could represent a new step in the treatment of STEC-HUS, which could potentially prevent long-term damage. If phase 3 trials are successful, earlier and broader use of INM004 is envisioned. We also discuss the potential impact of INM004 therapy, targeted vaccination strategies, and new diagnostic tools for this disease.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197620/pdf/","citationCount":"0","resultStr":"{\"title\":\"INM004: Polyclonal Neutralizing Antibodies Against Shiga Toxin as a Treatment for Hemolytic Uremic Syndrome.\",\"authors\":\"Marta Rivas, Mariana Pichel, Vanesa Zylberman, Mariana Colonna, Marina Valerio, Carolina Massa, Romina Pardo, Andrés E Ciocchini, Santiago Sanguineti, Ian Roubicek, Linus Spatz, Fernando Alberto Goldbaum\",\"doi\":\"10.3390/toxins17060282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury (AKI). Shiga toxin (Stx)-producing <i>Escherichia coli</i>-associated HUS (STEC-HUS) is one of the leading causes of AKI in children. Approximately 1.5 to 3% of children die during the acute phase, and about 30% experience long-term renal sequelae. Argentina has the highest incidence of STEC-HUS globally. Given the prominent role of Stx in its pathophysiology, STEC-HUS is considered more of a toxemia than a bacterial disease. Stx transport occurs before and after the STEC-HUS onset, allowing for the distinction between an early toxemia phase and an advanced toxemia phase. In this review, we present our efforts to develop INM004, an anti-Stx treatment aimed at ameliorating or preventing the clinical consequences of STEC-HUS. We describe the protein engineering that facilitated this development and the clinical path to demonstrate the safety and efficacy of INM004. This immunotherapy could represent a new step in the treatment of STEC-HUS, which could potentially prevent long-term damage. If phase 3 trials are successful, earlier and broader use of INM004 is envisioned. We also discuss the potential impact of INM004 therapy, targeted vaccination strategies, and new diagnostic tools for this disease.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17060282\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17060282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
INM004: Polyclonal Neutralizing Antibodies Against Shiga Toxin as a Treatment for Hemolytic Uremic Syndrome.
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury (AKI). Shiga toxin (Stx)-producing Escherichia coli-associated HUS (STEC-HUS) is one of the leading causes of AKI in children. Approximately 1.5 to 3% of children die during the acute phase, and about 30% experience long-term renal sequelae. Argentina has the highest incidence of STEC-HUS globally. Given the prominent role of Stx in its pathophysiology, STEC-HUS is considered more of a toxemia than a bacterial disease. Stx transport occurs before and after the STEC-HUS onset, allowing for the distinction between an early toxemia phase and an advanced toxemia phase. In this review, we present our efforts to develop INM004, an anti-Stx treatment aimed at ameliorating or preventing the clinical consequences of STEC-HUS. We describe the protein engineering that facilitated this development and the clinical path to demonstrate the safety and efficacy of INM004. This immunotherapy could represent a new step in the treatment of STEC-HUS, which could potentially prevent long-term damage. If phase 3 trials are successful, earlier and broader use of INM004 is envisioned. We also discuss the potential impact of INM004 therapy, targeted vaccination strategies, and new diagnostic tools for this disease.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.