与肿瘤微环境相关的放射学模型预测局部区域晚期鼻咽癌患者的免疫治疗反应和预后。

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-06-24 eCollection Date: 2025-01-01 DOI:10.34133/research.0749
Jie Sun, Xuewei Wu, Xiao Zhang, Weiyuan Huang, Xi Zhong, Xueyan Li, Kaiming Xue, Shuyi Liu, Xianjie Chen, Wenzhu Li, Xin Liu, Hui Shen, Jingjing You, Wenle He, Zhe Jin, Lijuan Yu, Yuange Li, Shuixing Zhang, Bin Zhang
{"title":"与肿瘤微环境相关的放射学模型预测局部区域晚期鼻咽癌患者的免疫治疗反应和预后。","authors":"Jie Sun, Xuewei Wu, Xiao Zhang, Weiyuan Huang, Xi Zhong, Xueyan Li, Kaiming Xue, Shuyi Liu, Xianjie Chen, Wenzhu Li, Xin Liu, Hui Shen, Jingjing You, Wenle He, Zhe Jin, Lijuan Yu, Yuange Li, Shuixing Zhang, Bin Zhang","doi":"10.34133/research.0749","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. <b>Methods:</b> This study included 246 LANPC patients (training cohort, <i>n</i> = 117; external test cohort, <i>n</i> = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. <b>Results:</b> The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |<i>r</i>|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |<i>r</i>|= 0.31 to 0.48), CD8 (84, |<i>r</i>|= 0.30 to 0.59), PD-L1 (73, |<i>r</i>|= 0.32 to 0.48), and CD163 (53, |<i>r</i>| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |<i>r</i>|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |<i>r</i>|= 0.44 to 0.64), CD45RO (65, |<i>r</i>|= 0.42 to 0.67), CD19 (35, |<i>r</i>|= 0.44 to 0.58), CD66b (61, |<i>r</i>| = 0.42 to 0.67), and FOXP3 (21, |<i>r</i>| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. <b>Conclusion:</b> The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0749"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.\",\"authors\":\"Jie Sun, Xuewei Wu, Xiao Zhang, Weiyuan Huang, Xi Zhong, Xueyan Li, Kaiming Xue, Shuyi Liu, Xianjie Chen, Wenzhu Li, Xin Liu, Hui Shen, Jingjing You, Wenle He, Zhe Jin, Lijuan Yu, Yuange Li, Shuixing Zhang, Bin Zhang\",\"doi\":\"10.34133/research.0749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. <b>Methods:</b> This study included 246 LANPC patients (training cohort, <i>n</i> = 117; external test cohort, <i>n</i> = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. <b>Results:</b> The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |<i>r</i>|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |<i>r</i>|= 0.31 to 0.48), CD8 (84, |<i>r</i>|= 0.30 to 0.59), PD-L1 (73, |<i>r</i>|= 0.32 to 0.48), and CD163 (53, |<i>r</i>| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |<i>r</i>|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |<i>r</i>|= 0.44 to 0.64), CD45RO (65, |<i>r</i>|= 0.42 to 0.67), CD19 (35, |<i>r</i>|= 0.44 to 0.58), CD66b (61, |<i>r</i>| = 0.42 to 0.67), and FOXP3 (21, |<i>r</i>| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. <b>Conclusion:</b> The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0749\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0749\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0749","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

背景:目前还没有确定可靠的生物标志物来预测程序性细胞死亡蛋白1 (PD-1)抑制剂在局部区域晚期鼻咽癌(LANPC)患者中的疗效。我们的目标是利用免疫治疗前的MRI建立放射学模型来预测对PD-1抑制剂的反应和患者预后。方法:本研究纳入246例LANPC患者(训练队列,n = 117;外部测试队列,n = 129),来自10个中心。使用性能最好的机器学习分类器创建放射学模型。将临床资料与放射学资料相结合,建立联合模型。采用苏木精和伊红(H&E)和免疫组织化学(IHC)染色的全切片图像(WSIs)进行放射组学可解释性研究。从wsi中提取了150个患者水平的核形态特征(NMFs)和12个细胞空间分布特征(CSDFs)。采用Spearman相关分析评估放射学特征与病理特征之间的相关性。结果:放射组学模型在预测治疗反应方面优于临床模型和联合模型(曲线下面积:0.760 vs 0.559 vs 0.652)。对于总生存估计,联合模型的表现与放射组学模型相当,但优于临床模型(一致性指数:0.858比0.812比0.664)。6个与治疗反应相关的放射学特征与50个h&e衍生的NMF(146对,|r|= 0.31至0.46)和2至26个ihc衍生的NMF相关,特别是CD45RO(69对,|r|= 0.31至0.48)、CD8(84对,|r|= 0.30至0.59)、PD-L1(73对,|r|= 0.32至0.48)和CD163(53对,|r|= 0.32至0.59)。8个预后放射学特征与11个h&e衍生的NMF(16对,|r|= 0.48 - 0.61)和2 - 31个ihc衍生的NMF相关,特别是PD-L1(80对,|r|= 0.44 - 0.64)、CD45RO(65对,|r|= 0.42 - 0.67)、CD19(35对,|r|= 0.44 - 0.58)、CD66b(61对,|r|= 0.42 - 0.67)和FOXP3(21对,|r|= 0.41 - 0.71)。相比之下,较少的csdf表现出与特定放射学特征的相关性。结论:放射组学模型和联合模型在预测LANPC患者免疫治疗反应和预后方面是可行的。放射学与病理学的相关性提示了预测模型的潜在生物学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Background: No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. Methods: This study included 246 LANPC patients (training cohort, n = 117; external test cohort, n = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. Results: The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |r|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |r|= 0.31 to 0.48), CD8 (84, |r|= 0.30 to 0.59), PD-L1 (73, |r|= 0.32 to 0.48), and CD163 (53, |r| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |r|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |r|= 0.44 to 0.64), CD45RO (65, |r|= 0.42 to 0.67), CD19 (35, |r|= 0.44 to 0.58), CD66b (61, |r| = 0.42 to 0.67), and FOXP3 (21, |r| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. Conclusion: The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信