{"title":"与肿瘤微环境相关的放射学模型预测局部区域晚期鼻咽癌患者的免疫治疗反应和预后。","authors":"Jie Sun, Xuewei Wu, Xiao Zhang, Weiyuan Huang, Xi Zhong, Xueyan Li, Kaiming Xue, Shuyi Liu, Xianjie Chen, Wenzhu Li, Xin Liu, Hui Shen, Jingjing You, Wenle He, Zhe Jin, Lijuan Yu, Yuange Li, Shuixing Zhang, Bin Zhang","doi":"10.34133/research.0749","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. <b>Methods:</b> This study included 246 LANPC patients (training cohort, <i>n</i> = 117; external test cohort, <i>n</i> = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. <b>Results:</b> The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |<i>r</i>|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |<i>r</i>|= 0.31 to 0.48), CD8 (84, |<i>r</i>|= 0.30 to 0.59), PD-L1 (73, |<i>r</i>|= 0.32 to 0.48), and CD163 (53, |<i>r</i>| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |<i>r</i>|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |<i>r</i>|= 0.44 to 0.64), CD45RO (65, |<i>r</i>|= 0.42 to 0.67), CD19 (35, |<i>r</i>|= 0.44 to 0.58), CD66b (61, |<i>r</i>| = 0.42 to 0.67), and FOXP3 (21, |<i>r</i>| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. <b>Conclusion:</b> The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0749"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.\",\"authors\":\"Jie Sun, Xuewei Wu, Xiao Zhang, Weiyuan Huang, Xi Zhong, Xueyan Li, Kaiming Xue, Shuyi Liu, Xianjie Chen, Wenzhu Li, Xin Liu, Hui Shen, Jingjing You, Wenle He, Zhe Jin, Lijuan Yu, Yuange Li, Shuixing Zhang, Bin Zhang\",\"doi\":\"10.34133/research.0749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. <b>Methods:</b> This study included 246 LANPC patients (training cohort, <i>n</i> = 117; external test cohort, <i>n</i> = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. <b>Results:</b> The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |<i>r</i>|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |<i>r</i>|= 0.31 to 0.48), CD8 (84, |<i>r</i>|= 0.30 to 0.59), PD-L1 (73, |<i>r</i>|= 0.32 to 0.48), and CD163 (53, |<i>r</i>| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |<i>r</i>|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |<i>r</i>|= 0.44 to 0.64), CD45RO (65, |<i>r</i>|= 0.42 to 0.67), CD19 (35, |<i>r</i>|= 0.44 to 0.58), CD66b (61, |<i>r</i>| = 0.42 to 0.67), and FOXP3 (21, |<i>r</i>| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. <b>Conclusion:</b> The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0749\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0749\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0749","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.
Background: No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. Methods: This study included 246 LANPC patients (training cohort, n = 117; external test cohort, n = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. Results: The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |r|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |r|= 0.31 to 0.48), CD8 (84, |r|= 0.30 to 0.59), PD-L1 (73, |r|= 0.32 to 0.48), and CD163 (53, |r| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |r|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |r|= 0.44 to 0.64), CD45RO (65, |r|= 0.42 to 0.67), CD19 (35, |r|= 0.44 to 0.58), CD66b (61, |r| = 0.42 to 0.67), and FOXP3 (21, |r| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. Conclusion: The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.