Wei Deng, Tianshu Wang, Lei Li, Xuanyu Xiao, Yuanyuan Xu, Qiujiang Li, Qingsong Zhou, Yong Yin, Hongsheng Yang, Kai Gong, Yue Zhou, Yunbing Wang
{"title":"纳米材料在骨关节炎治疗和免疫调节中的研究进展。","authors":"Wei Deng, Tianshu Wang, Lei Li, Xuanyu Xiao, Yuanyuan Xu, Qiujiang Li, Qingsong Zhou, Yong Yin, Hongsheng Yang, Kai Gong, Yue Zhou, Yunbing Wang","doi":"10.1093/rb/rbaf048","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a highly prevalent degenerative cartilage disease globally. The medical community has recognized it as one of the major public health problems today. Nanomaterials are considered the most promising avenue for OA treatment because they exhibit unique physicochemical properties such as high catalytic activity, bio-enzyme-like reaction kinetics, and modulation of joint immune responses. Besides, nanomaterials can exert higher targeting to improve therapeutic efficacy and reduce side effects. These unique advantages have led to the widespread development of nanomaterials for OA treatment, and they are gradually seeing their most prosperous moment. A timely and comprehensive review of OA pathogenesis-immunomodulation-therapeutic efficacy from a nanomaterials perspective would greatly broaden this research area. This review summarizes the recent advances in nanomaterials for OA treatment. Finally, the main challenges and opportunities for nanomaterials to modulate the immune system for OA treatment are discussed.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf048"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187071/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review of nanomaterials in osteoarthritis treatment and immune modulation.\",\"authors\":\"Wei Deng, Tianshu Wang, Lei Li, Xuanyu Xiao, Yuanyuan Xu, Qiujiang Li, Qingsong Zhou, Yong Yin, Hongsheng Yang, Kai Gong, Yue Zhou, Yunbing Wang\",\"doi\":\"10.1093/rb/rbaf048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) is a highly prevalent degenerative cartilage disease globally. The medical community has recognized it as one of the major public health problems today. Nanomaterials are considered the most promising avenue for OA treatment because they exhibit unique physicochemical properties such as high catalytic activity, bio-enzyme-like reaction kinetics, and modulation of joint immune responses. Besides, nanomaterials can exert higher targeting to improve therapeutic efficacy and reduce side effects. These unique advantages have led to the widespread development of nanomaterials for OA treatment, and they are gradually seeing their most prosperous moment. A timely and comprehensive review of OA pathogenesis-immunomodulation-therapeutic efficacy from a nanomaterials perspective would greatly broaden this research area. This review summarizes the recent advances in nanomaterials for OA treatment. Finally, the main challenges and opportunities for nanomaterials to modulate the immune system for OA treatment are discussed.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbaf048\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbaf048\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A review of nanomaterials in osteoarthritis treatment and immune modulation.
Osteoarthritis (OA) is a highly prevalent degenerative cartilage disease globally. The medical community has recognized it as one of the major public health problems today. Nanomaterials are considered the most promising avenue for OA treatment because they exhibit unique physicochemical properties such as high catalytic activity, bio-enzyme-like reaction kinetics, and modulation of joint immune responses. Besides, nanomaterials can exert higher targeting to improve therapeutic efficacy and reduce side effects. These unique advantages have led to the widespread development of nanomaterials for OA treatment, and they are gradually seeing their most prosperous moment. A timely and comprehensive review of OA pathogenesis-immunomodulation-therapeutic efficacy from a nanomaterials perspective would greatly broaden this research area. This review summarizes the recent advances in nanomaterials for OA treatment. Finally, the main challenges and opportunities for nanomaterials to modulate the immune system for OA treatment are discussed.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.