动态结构方程模型中的测量模型规格错误:功率、可靠性和其他考虑。

IF 3.2 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hyungeun Oh, Michael D Hunter, Sy-Miin Chow
{"title":"动态结构方程模型中的测量模型规格错误:功率、可靠性和其他考虑。","authors":"Hyungeun Oh, Michael D Hunter, Sy-Miin Chow","doi":"10.1080/10705511.2025.2452884","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic Structural Equation Models (DSEMs) integrate multilevel modeling, time series analysis, and structural equation modeling within a Bayesian estimation framework, offering a versatile tool for analyzing intensive longitudinal data (ILD). However, the impact of measurement structure misspecification in DSEMs, especially under varying reliability conditions and model complexities, remains underexplored. Our Monte Carlo simulation revealed that omitting measurement errors when present led to severe biases in dynamic parameters regardless of reliability conditions, though power remained high. Increasing the number of participants and time points ameliorated but did not eliminate all biases. A single-indicator DSEMs with a measurement structure using composite scores showed similar performance to multiple indicators DSEMs. Empirical applications showed discrepancies in dynamic parameters based on the number of indicators and measurement structures used. Leveraging these findings, we provide design recommendations, functions for extending reliability indices from single-indicator to multiple-indicator models, and guidelines for power evaluations under different reliability conditions.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"32 3","pages":"511-528"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183645/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measurement Model Misspecification in Dynamic Structural Equation Models: Power, Reliability, and Other Considerations.\",\"authors\":\"Hyungeun Oh, Michael D Hunter, Sy-Miin Chow\",\"doi\":\"10.1080/10705511.2025.2452884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic Structural Equation Models (DSEMs) integrate multilevel modeling, time series analysis, and structural equation modeling within a Bayesian estimation framework, offering a versatile tool for analyzing intensive longitudinal data (ILD). However, the impact of measurement structure misspecification in DSEMs, especially under varying reliability conditions and model complexities, remains underexplored. Our Monte Carlo simulation revealed that omitting measurement errors when present led to severe biases in dynamic parameters regardless of reliability conditions, though power remained high. Increasing the number of participants and time points ameliorated but did not eliminate all biases. A single-indicator DSEMs with a measurement structure using composite scores showed similar performance to multiple indicators DSEMs. Empirical applications showed discrepancies in dynamic parameters based on the number of indicators and measurement structures used. Leveraging these findings, we provide design recommendations, functions for extending reliability indices from single-indicator to multiple-indicator models, and guidelines for power evaluations under different reliability conditions.</p>\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"32 3\",\"pages\":\"511-528\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2025.2452884\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2025.2452884","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

动态结构方程模型(dsem)在贝叶斯估计框架内集成了多层次建模、时间序列分析和结构方程建模,为分析密集纵向数据(ILD)提供了一种多功能工具。然而,在DSEMs中,特别是在不同的可靠性条件和模型复杂性下,测量结构规格错误的影响仍未得到充分的研究。我们的蒙特卡罗模拟显示,忽略测量误差会导致动态参数的严重偏差,而不管可靠性条件如何,尽管功率仍然很高。增加参与者数量和时间点可以改善但不能消除所有偏差。采用复合分数测量结构的单指标数字化决策模型与多指标数字化决策模型表现出相似的性能。实证应用表明,根据所使用的指标数量和测量结构,动态参数存在差异。利用这些发现,我们提供了设计建议,将可靠性指标从单指标模型扩展到多指标模型的函数,以及在不同可靠性条件下的功率评估指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement Model Misspecification in Dynamic Structural Equation Models: Power, Reliability, and Other Considerations.

Dynamic Structural Equation Models (DSEMs) integrate multilevel modeling, time series analysis, and structural equation modeling within a Bayesian estimation framework, offering a versatile tool for analyzing intensive longitudinal data (ILD). However, the impact of measurement structure misspecification in DSEMs, especially under varying reliability conditions and model complexities, remains underexplored. Our Monte Carlo simulation revealed that omitting measurement errors when present led to severe biases in dynamic parameters regardless of reliability conditions, though power remained high. Increasing the number of participants and time points ameliorated but did not eliminate all biases. A single-indicator DSEMs with a measurement structure using composite scores showed similar performance to multiple indicators DSEMs. Empirical applications showed discrepancies in dynamic parameters based on the number of indicators and measurement structures used. Leveraging these findings, we provide design recommendations, functions for extending reliability indices from single-indicator to multiple-indicator models, and guidelines for power evaluations under different reliability conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信