三七苷R1是一种新型的天然PPARγ激动剂,通过增强glut4依赖性神经元葡萄糖摄取来减轻糖尿病性阿尔茨海默病小鼠模型的认知缺陷。

IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL
Zongyang Li, Yuan Zhang, Rui Su, Jihu Yang, Fanfan Chen, Lei Chen, Chen Yao, Sixian Li, Ping Cui, Xiangbao Meng, Guodong Huang
{"title":"三七苷R1是一种新型的天然PPARγ激动剂,通过增强glut4依赖性神经元葡萄糖摄取来减轻糖尿病性阿尔茨海默病小鼠模型的认知缺陷。","authors":"Zongyang Li, Yuan Zhang, Rui Su, Jihu Yang, Fanfan Chen, Lei Chen, Chen Yao, Sixian Li, Ping Cui, Xiangbao Meng, Guodong Huang","doi":"10.1002/ptr.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous studies demonstrated the potential of notoginsenoside R1 (NGR1), a primary bioactive compound from Panax notoginseng, in alleviating diabetic encephalopathy in db/db mice and mitigating amyloid-β (Aβ)-induced neuronal damage. This study aimed to investigate the positive effects of NGR1 against cognitive deficits in a diabetic Alzheimer's disease (AD) mouse model (APP/PS1xdb/db mice). APP/PS1xdb/db mice were intragastrically administrated with NGR1 (40 mg/kg/day) or co-administrated with NGR1 and a selective PPARγ inhibitor GW9662 for 16 weeks. We identified NGR1 as a novel PPARγ agonist through molecular docking, surface plasmon resonance, and dual-luciferase reporter assay. NGR1 treatment significantly promoted the membrane translocation of GLUT4 and enhanced 2-deoxyglucose uptake in primary mouse hippocampal neurons. Furthermore, NGR1 treatment notably mitigated cognitive deficits in APP/PS1xdb/db mice. This treatment correlated with reduced blood glucose levels, lowered blood HbA1c, and decreased serum insulin levels, coupled with enhanced glucose tolerance and insulin sensitivity. Additionally, NGR1 treatment ameliorated Aβ burden, suppressed microglia-induced neuroinflammation, and notably increased cerebral glucose uptake, as demonstrated by <sup>18</sup>F-FDG PET scans. NGR1 treatment could upregulate PPARγ and GLUT4 expression and increase phosphorylation of Akt at Ser473 while decreasing phosphorylation of IRS-1 at Ser616 in the hippocampus of APP/PS1xdb/db mice. Crucially, the protective effects of NGR1 were abolished by co-administration with GW9662. NGR1 demonstrated efficacy in enhancing neuronal glucose uptake through the activation of the PPARγ/Akt/GLUT4 signaling pathways in APP/PS1xdb/db mice, positioning it as a promising candidate for diabetic AD treatment.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notoginsenoside R1, a Novel Natural PPARγ Agonist, Attenuates Cognitive Deficits in a Mouse Model of Diabetic Alzheimer's Disease Through Enhancing GLUT4-Dependent Neuronal Glucose Uptake.\",\"authors\":\"Zongyang Li, Yuan Zhang, Rui Su, Jihu Yang, Fanfan Chen, Lei Chen, Chen Yao, Sixian Li, Ping Cui, Xiangbao Meng, Guodong Huang\",\"doi\":\"10.1002/ptr.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our previous studies demonstrated the potential of notoginsenoside R1 (NGR1), a primary bioactive compound from Panax notoginseng, in alleviating diabetic encephalopathy in db/db mice and mitigating amyloid-β (Aβ)-induced neuronal damage. This study aimed to investigate the positive effects of NGR1 against cognitive deficits in a diabetic Alzheimer's disease (AD) mouse model (APP/PS1xdb/db mice). APP/PS1xdb/db mice were intragastrically administrated with NGR1 (40 mg/kg/day) or co-administrated with NGR1 and a selective PPARγ inhibitor GW9662 for 16 weeks. We identified NGR1 as a novel PPARγ agonist through molecular docking, surface plasmon resonance, and dual-luciferase reporter assay. NGR1 treatment significantly promoted the membrane translocation of GLUT4 and enhanced 2-deoxyglucose uptake in primary mouse hippocampal neurons. Furthermore, NGR1 treatment notably mitigated cognitive deficits in APP/PS1xdb/db mice. This treatment correlated with reduced blood glucose levels, lowered blood HbA1c, and decreased serum insulin levels, coupled with enhanced glucose tolerance and insulin sensitivity. Additionally, NGR1 treatment ameliorated Aβ burden, suppressed microglia-induced neuroinflammation, and notably increased cerebral glucose uptake, as demonstrated by <sup>18</sup>F-FDG PET scans. NGR1 treatment could upregulate PPARγ and GLUT4 expression and increase phosphorylation of Akt at Ser473 while decreasing phosphorylation of IRS-1 at Ser616 in the hippocampus of APP/PS1xdb/db mice. Crucially, the protective effects of NGR1 were abolished by co-administration with GW9662. NGR1 demonstrated efficacy in enhancing neuronal glucose uptake through the activation of the PPARγ/Akt/GLUT4 signaling pathways in APP/PS1xdb/db mice, positioning it as a promising candidate for diabetic AD treatment.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.70006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.70006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

我们之前的研究表明,三七的主要生物活性化合物三七皂苷R1 (NGR1)具有减轻db/db小鼠糖尿病性脑病和减轻淀粉样蛋白-β (a β)诱导的神经元损伤的潜力。本研究旨在探讨NGR1对糖尿病性阿尔茨海默病(AD)小鼠模型(APP/PS1xdb/db小鼠)认知缺陷的积极作用。APP/PS1xdb/db小鼠灌胃NGR1 (40 mg/kg/天)或与NGR1和选择性PPARγ抑制剂GW9662联合给药,持续16周。我们通过分子对接、表面等离子体共振和双荧光素酶报告实验确定了NGR1是一种新型的PPARγ激动剂。NGR1处理显著促进了小鼠海马原代神经元中GLUT4的膜移位和2-脱氧葡萄糖的摄取。此外,NGR1治疗显著减轻了APP/PS1xdb/db小鼠的认知缺陷。这种治疗与降低血糖水平、降低血糖化血红蛋白和降低血清胰岛素水平相关,并伴有增强的葡萄糖耐量和胰岛素敏感性。此外,正如18F-FDG PET扫描所显示的那样,NGR1治疗改善了Aβ负荷,抑制了小胶质细胞诱导的神经炎症,并显著增加了脑葡萄糖摄取。NGR1处理可上调APP/PS1xdb/db小鼠海马组织中PPARγ和GLUT4的表达,增加Akt的Ser473位点磷酸化,降低IRS-1的Ser616位点磷酸化。至关重要的是,NGR1与GW9662合用可消除NGR1的保护作用。在APP/PS1xdb/db小鼠中,NGR1通过激活PPARγ/Akt/GLUT4信号通路增强神经元葡萄糖摄取的功效,将其定位为糖尿病性AD治疗的有希望的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notoginsenoside R1, a Novel Natural PPARγ Agonist, Attenuates Cognitive Deficits in a Mouse Model of Diabetic Alzheimer's Disease Through Enhancing GLUT4-Dependent Neuronal Glucose Uptake.

Our previous studies demonstrated the potential of notoginsenoside R1 (NGR1), a primary bioactive compound from Panax notoginseng, in alleviating diabetic encephalopathy in db/db mice and mitigating amyloid-β (Aβ)-induced neuronal damage. This study aimed to investigate the positive effects of NGR1 against cognitive deficits in a diabetic Alzheimer's disease (AD) mouse model (APP/PS1xdb/db mice). APP/PS1xdb/db mice were intragastrically administrated with NGR1 (40 mg/kg/day) or co-administrated with NGR1 and a selective PPARγ inhibitor GW9662 for 16 weeks. We identified NGR1 as a novel PPARγ agonist through molecular docking, surface plasmon resonance, and dual-luciferase reporter assay. NGR1 treatment significantly promoted the membrane translocation of GLUT4 and enhanced 2-deoxyglucose uptake in primary mouse hippocampal neurons. Furthermore, NGR1 treatment notably mitigated cognitive deficits in APP/PS1xdb/db mice. This treatment correlated with reduced blood glucose levels, lowered blood HbA1c, and decreased serum insulin levels, coupled with enhanced glucose tolerance and insulin sensitivity. Additionally, NGR1 treatment ameliorated Aβ burden, suppressed microglia-induced neuroinflammation, and notably increased cerebral glucose uptake, as demonstrated by 18F-FDG PET scans. NGR1 treatment could upregulate PPARγ and GLUT4 expression and increase phosphorylation of Akt at Ser473 while decreasing phosphorylation of IRS-1 at Ser616 in the hippocampus of APP/PS1xdb/db mice. Crucially, the protective effects of NGR1 were abolished by co-administration with GW9662. NGR1 demonstrated efficacy in enhancing neuronal glucose uptake through the activation of the PPARγ/Akt/GLUT4 signaling pathways in APP/PS1xdb/db mice, positioning it as a promising candidate for diabetic AD treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信