Paola Najera, Christian E Ogaugwu, Tyler F Chan, Raja Babu Singh Kushwah, Zach Adelman
{"title":"测量蚊子飞行性能的挑战:超越昆虫不育技术,进入转基因和基于基因驱动的方法。","authors":"Paola Najera, Christian E Ogaugwu, Tyler F Chan, Raja Babu Singh Kushwah, Zach Adelman","doi":"10.1098/rsob.240400","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive insects inflict global costs of more than 70 billion USD annually by destroying crops and spreading disease-causing pathogens. Sterile insect technique (SIT), an insect population control method, involves the irradiation or chemical sterilization of insects to produce sterile males that are mass-released. SIT has proven effective in reducing populations of the Mediterranean fruit fly, Mexican fruit fly and screwworm fly. In the past decade, efforts to improve SIT with transgenic approaches have increased, including the development of potentially highly invasive gene drive transgenes. Determining flight capability is vital to the success of any insect control programme, and various flight assays can be used to analyse insect dispersal, flight behaviour and the mechanics behind flight. However, traditional flight assays such as mark-release-recapture become more challenging with transgenic or gene drive arthropods due to ecological concerns, while assays such as wind tunnels or flight mills/arenas may not capture the full range of flight abilities. This review seeks to cover current flight assays and their limitations as well as the requirements for flight assays to establish comparative flight ability for genetically modified insects to better prioritize strains prior to any potential field-based releases.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 6","pages":"240400"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187402/pdf/","citationCount":"0","resultStr":"{\"title\":\"The challenge of measuring mosquito flight performance: going beyond sterile insect technique and into transgenic and gene drive-based approaches.\",\"authors\":\"Paola Najera, Christian E Ogaugwu, Tyler F Chan, Raja Babu Singh Kushwah, Zach Adelman\",\"doi\":\"10.1098/rsob.240400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive insects inflict global costs of more than 70 billion USD annually by destroying crops and spreading disease-causing pathogens. Sterile insect technique (SIT), an insect population control method, involves the irradiation or chemical sterilization of insects to produce sterile males that are mass-released. SIT has proven effective in reducing populations of the Mediterranean fruit fly, Mexican fruit fly and screwworm fly. In the past decade, efforts to improve SIT with transgenic approaches have increased, including the development of potentially highly invasive gene drive transgenes. Determining flight capability is vital to the success of any insect control programme, and various flight assays can be used to analyse insect dispersal, flight behaviour and the mechanics behind flight. However, traditional flight assays such as mark-release-recapture become more challenging with transgenic or gene drive arthropods due to ecological concerns, while assays such as wind tunnels or flight mills/arenas may not capture the full range of flight abilities. This review seeks to cover current flight assays and their limitations as well as the requirements for flight assays to establish comparative flight ability for genetically modified insects to better prioritize strains prior to any potential field-based releases.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"15 6\",\"pages\":\"240400\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240400\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240400","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The challenge of measuring mosquito flight performance: going beyond sterile insect technique and into transgenic and gene drive-based approaches.
Invasive insects inflict global costs of more than 70 billion USD annually by destroying crops and spreading disease-causing pathogens. Sterile insect technique (SIT), an insect population control method, involves the irradiation or chemical sterilization of insects to produce sterile males that are mass-released. SIT has proven effective in reducing populations of the Mediterranean fruit fly, Mexican fruit fly and screwworm fly. In the past decade, efforts to improve SIT with transgenic approaches have increased, including the development of potentially highly invasive gene drive transgenes. Determining flight capability is vital to the success of any insect control programme, and various flight assays can be used to analyse insect dispersal, flight behaviour and the mechanics behind flight. However, traditional flight assays such as mark-release-recapture become more challenging with transgenic or gene drive arthropods due to ecological concerns, while assays such as wind tunnels or flight mills/arenas may not capture the full range of flight abilities. This review seeks to cover current flight assays and their limitations as well as the requirements for flight assays to establish comparative flight ability for genetically modified insects to better prioritize strains prior to any potential field-based releases.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.