拓扑异构酶2α和2β在牛痘病毒胞质复制中的非冗余作用。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ilaria Dalla Rosa, Lois Kent, Michael Way
{"title":"拓扑异构酶2α和2β在牛痘病毒胞质复制中的非冗余作用。","authors":"Ilaria Dalla Rosa, Lois Kent, Michael Way","doi":"10.1093/nar/gkaf566","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccinia virus is a large enveloped DNA virus, which, like all poxviruses, replicates in the cytoplasm of infected cells. Vaccinia was historically thought to encode all the proteins required for its replication. However, more recent findings have shown that nuclear host proteins are redirected to the cytoplasm to facilitate viral replication. Among these, topoisomerase 2α (TOP2A) and 2β (TOP2B), which mediate nuclear transcription, DNA replication, and chromosome segregation are the most abundant host proteins associated with nascent viral genomes. Here, we investigate the mechanisms driving TOP2A and TOP2B cytoplasmic translocation and their role in viral replication. We found that early viral protein synthesis induces the cytosolic relocalization of both isoforms, which are subsequently recruited to viral factories by an interaction of their C-terminal domains with the viral ligase, A50. TOP2A promotes replication by interacting with the vaccinia DNA replication machinery. In contrast, TOP2B suppresses replication by enhancing the formation of double-stranded RNA and antiviral granules, containing components of the tRNA splicing ligase complex. Our analysis provides new insights into host-pathogen interactions during poxvirus infection and the role of topoisomerase 2 outside of the nucleus.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 12","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonredundant roles of topoisomerase 2α and 2β in the cytosolic replication of vaccinia virus.\",\"authors\":\"Ilaria Dalla Rosa, Lois Kent, Michael Way\",\"doi\":\"10.1093/nar/gkaf566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vaccinia virus is a large enveloped DNA virus, which, like all poxviruses, replicates in the cytoplasm of infected cells. Vaccinia was historically thought to encode all the proteins required for its replication. However, more recent findings have shown that nuclear host proteins are redirected to the cytoplasm to facilitate viral replication. Among these, topoisomerase 2α (TOP2A) and 2β (TOP2B), which mediate nuclear transcription, DNA replication, and chromosome segregation are the most abundant host proteins associated with nascent viral genomes. Here, we investigate the mechanisms driving TOP2A and TOP2B cytoplasmic translocation and their role in viral replication. We found that early viral protein synthesis induces the cytosolic relocalization of both isoforms, which are subsequently recruited to viral factories by an interaction of their C-terminal domains with the viral ligase, A50. TOP2A promotes replication by interacting with the vaccinia DNA replication machinery. In contrast, TOP2B suppresses replication by enhancing the formation of double-stranded RNA and antiviral granules, containing components of the tRNA splicing ligase complex. Our analysis provides new insights into host-pathogen interactions during poxvirus infection and the role of topoisomerase 2 outside of the nucleus.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 12\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf566\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf566","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牛痘病毒是一种大包膜DNA病毒,像所有痘病毒一样,在感染细胞的细胞质中复制。牛痘历来被认为能够编码其复制所需的所有蛋白质。然而,最近的研究结果表明,核宿主蛋白被重定向到细胞质中,以促进病毒复制。其中,介导核转录、DNA复制和染色体分离的拓扑异构酶2α (TOP2A)和2β (TOP2B)是与新生病毒基因组相关的最丰富的宿主蛋白。在这里,我们研究了驱动TOP2A和TOP2B细胞质易位的机制及其在病毒复制中的作用。我们发现,早期的病毒蛋白合成诱导了这两种同工异构体的细胞质重定位,它们随后通过其c端结构域与病毒连接酶A50的相互作用被招募到病毒工厂。TOP2A通过与牛痘DNA复制机制相互作用来促进复制。相比之下,TOP2B通过增强双链RNA和抗病毒颗粒的形成来抑制复制,这些颗粒含有tRNA剪接连接酶复合物的成分。我们的分析为痘病毒感染过程中宿主-病原体相互作用以及核外拓扑异构酶2的作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonredundant roles of topoisomerase 2α and 2β in the cytosolic replication of vaccinia virus.

Vaccinia virus is a large enveloped DNA virus, which, like all poxviruses, replicates in the cytoplasm of infected cells. Vaccinia was historically thought to encode all the proteins required for its replication. However, more recent findings have shown that nuclear host proteins are redirected to the cytoplasm to facilitate viral replication. Among these, topoisomerase 2α (TOP2A) and 2β (TOP2B), which mediate nuclear transcription, DNA replication, and chromosome segregation are the most abundant host proteins associated with nascent viral genomes. Here, we investigate the mechanisms driving TOP2A and TOP2B cytoplasmic translocation and their role in viral replication. We found that early viral protein synthesis induces the cytosolic relocalization of both isoforms, which are subsequently recruited to viral factories by an interaction of their C-terminal domains with the viral ligase, A50. TOP2A promotes replication by interacting with the vaccinia DNA replication machinery. In contrast, TOP2B suppresses replication by enhancing the formation of double-stranded RNA and antiviral granules, containing components of the tRNA splicing ligase complex. Our analysis provides new insights into host-pathogen interactions during poxvirus infection and the role of topoisomerase 2 outside of the nucleus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信