Dalliane Oliveira Soares, Lucas Yago Melo Ferreira, Gabriel Victor Pina Rodrigues, João Pedro Nunes Santos, Ícaro Santos Lopes, Lucas Barbosa de Amorim Conceição, Tatyana Chagas Moura, Isaque João da Silva de Faria, Roenick Proveti Olmo, Weyder Cristiano Santana, Marco Antônio Costa, Eric Roberto Guimarães Rocha Aguiar
{"title":"无刺蜂(Melipona quadrifasciata) mirna的研究。","authors":"Dalliane Oliveira Soares, Lucas Yago Melo Ferreira, Gabriel Victor Pina Rodrigues, João Pedro Nunes Santos, Ícaro Santos Lopes, Lucas Barbosa de Amorim Conceição, Tatyana Chagas Moura, Isaque João da Silva de Faria, Roenick Proveti Olmo, Weyder Cristiano Santana, Marco Antônio Costa, Eric Roberto Guimarães Rocha Aguiar","doi":"10.3390/ncrna11030048","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are key post-transcriptional regulators involved in a wide range of biological processes in insects, yet little is known about their roles in stingless bees. Here, we present the first characterization of miRNAs in <i>Melipona quadrifasciata</i> using small RNAs (sRNAs) deep sequencing. A total of 193 high-confidence mature miRNAs were identified, including 106 <i>M. quadrifasciata</i>-exclusive sequences. Expression profiling revealed that mqu-miR-1 and mqu-miR-276 together accounted for over 70% of all miRNA reads, suggesting their central roles in development and reproduction. Comparative analyses showed a higher conservation of <i>M. quadrifasciata</i> miRNAs with other Hymenopterans, especially <i>Apis mellifera</i> and <i>Bombus</i> spp. Putative target genes were predicted using a consensus approach, and functional annotation indicated their involvement in diverse biological regulatory pathways. This work represents the first comprehensive identification of the miRNA repertoire in stingless bees using sRNAs and provides a valuable foundation for understanding miRNA-mediated gene regulation in this ecologically and economically important pollinator.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196327/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights into miRNAs of the Stingless Bee <i>Melipona quadrifasciata</i>.\",\"authors\":\"Dalliane Oliveira Soares, Lucas Yago Melo Ferreira, Gabriel Victor Pina Rodrigues, João Pedro Nunes Santos, Ícaro Santos Lopes, Lucas Barbosa de Amorim Conceição, Tatyana Chagas Moura, Isaque João da Silva de Faria, Roenick Proveti Olmo, Weyder Cristiano Santana, Marco Antônio Costa, Eric Roberto Guimarães Rocha Aguiar\",\"doi\":\"10.3390/ncrna11030048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are key post-transcriptional regulators involved in a wide range of biological processes in insects, yet little is known about their roles in stingless bees. Here, we present the first characterization of miRNAs in <i>Melipona quadrifasciata</i> using small RNAs (sRNAs) deep sequencing. A total of 193 high-confidence mature miRNAs were identified, including 106 <i>M. quadrifasciata</i>-exclusive sequences. Expression profiling revealed that mqu-miR-1 and mqu-miR-276 together accounted for over 70% of all miRNA reads, suggesting their central roles in development and reproduction. Comparative analyses showed a higher conservation of <i>M. quadrifasciata</i> miRNAs with other Hymenopterans, especially <i>Apis mellifera</i> and <i>Bombus</i> spp. Putative target genes were predicted using a consensus approach, and functional annotation indicated their involvement in diverse biological regulatory pathways. This work represents the first comprehensive identification of the miRNA repertoire in stingless bees using sRNAs and provides a valuable foundation for understanding miRNA-mediated gene regulation in this ecologically and economically important pollinator.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna11030048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11030048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Insights into miRNAs of the Stingless Bee Melipona quadrifasciata.
MicroRNAs (miRNAs) are key post-transcriptional regulators involved in a wide range of biological processes in insects, yet little is known about their roles in stingless bees. Here, we present the first characterization of miRNAs in Melipona quadrifasciata using small RNAs (sRNAs) deep sequencing. A total of 193 high-confidence mature miRNAs were identified, including 106 M. quadrifasciata-exclusive sequences. Expression profiling revealed that mqu-miR-1 and mqu-miR-276 together accounted for over 70% of all miRNA reads, suggesting their central roles in development and reproduction. Comparative analyses showed a higher conservation of M. quadrifasciata miRNAs with other Hymenopterans, especially Apis mellifera and Bombus spp. Putative target genes were predicted using a consensus approach, and functional annotation indicated their involvement in diverse biological regulatory pathways. This work represents the first comprehensive identification of the miRNA repertoire in stingless bees using sRNAs and provides a valuable foundation for understanding miRNA-mediated gene regulation in this ecologically and economically important pollinator.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.