临界状态是大脑功能的统一设定值吗?

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Keith B Hengen, Woodrow L Shew
{"title":"临界状态是大脑功能的统一设定值吗?","authors":"Keith B Hengen, Woodrow L Shew","doi":"10.1016/j.neuron.2025.05.020","DOIUrl":null,"url":null,"abstract":"<p><p>Brains face selective pressure to optimize computation, broadly defined. This is achieved by mechanisms including development, plasticity, and homeostasis. Is there a universal optimum around which the healthy brain tunes itself, across time and individuals? The criticality hypothesis posits such a setpoint. Criticality is a state imbued with internally generated, multiscale, marginally stable dynamics that maximize the features of information processing. Experimental support emerged two decades ago and has accumulated at an accelerating pace despite disagreement. Here, we lay out the logic of criticality as a general computational endpoint and review experimental evidence. We perform a meta-analysis of 140 datasets published between 2003 and 2024. We find that a long-standing controversy is the product of a methodological choice with no bearing on underlying dynamics. Our results suggest that a new generation of research can leverage criticality-as a unifying principle of brain function-to accelerate understanding of behavior, cognition, and disease.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is criticality a unified setpoint of brain function?\",\"authors\":\"Keith B Hengen, Woodrow L Shew\",\"doi\":\"10.1016/j.neuron.2025.05.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brains face selective pressure to optimize computation, broadly defined. This is achieved by mechanisms including development, plasticity, and homeostasis. Is there a universal optimum around which the healthy brain tunes itself, across time and individuals? The criticality hypothesis posits such a setpoint. Criticality is a state imbued with internally generated, multiscale, marginally stable dynamics that maximize the features of information processing. Experimental support emerged two decades ago and has accumulated at an accelerating pace despite disagreement. Here, we lay out the logic of criticality as a general computational endpoint and review experimental evidence. We perform a meta-analysis of 140 datasets published between 2003 and 2024. We find that a long-standing controversy is the product of a methodological choice with no bearing on underlying dynamics. Our results suggest that a new generation of research can leverage criticality-as a unifying principle of brain function-to accelerate understanding of behavior, cognition, and disease.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.05.020\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.05.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大脑面临着优化广义计算的选择压力。这是通过发育、可塑性和体内平衡等机制实现的。健康的大脑是否存在一个普遍的最佳状态,可以在不同的时间和个体之间进行自我调节?临界假设假定了这样一个设定值。临界状态是一种充满了内部产生的、多尺度的、边缘稳定的动态的状态,它最大限度地发挥了信息处理的特征。20年前就出现了实验性的支持,尽管存在分歧,但这种支持正在加速积累。在这里,我们将临界逻辑作为一般计算端点并回顾实验证据。我们对2003年至2024年间发表的140个数据集进行了荟萃分析。我们发现,长期存在的争议是方法论选择的产物,与潜在的动态无关。我们的研究结果表明,新一代的研究可以利用批判性——作为大脑功能的统一原则——来加速对行为、认知和疾病的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is criticality a unified setpoint of brain function?

Brains face selective pressure to optimize computation, broadly defined. This is achieved by mechanisms including development, plasticity, and homeostasis. Is there a universal optimum around which the healthy brain tunes itself, across time and individuals? The criticality hypothesis posits such a setpoint. Criticality is a state imbued with internally generated, multiscale, marginally stable dynamics that maximize the features of information processing. Experimental support emerged two decades ago and has accumulated at an accelerating pace despite disagreement. Here, we lay out the logic of criticality as a general computational endpoint and review experimental evidence. We perform a meta-analysis of 140 datasets published between 2003 and 2024. We find that a long-standing controversy is the product of a methodological choice with no bearing on underlying dynamics. Our results suggest that a new generation of research can leverage criticality-as a unifying principle of brain function-to accelerate understanding of behavior, cognition, and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信