Teng-Fei Xing, Yu-Long Li, Hao Yang, Deborah Charlesworth, Jin-Xian Liu
{"title":"半喙鱼幼性染色体ZW系统的广泛重组抑制和遗传退化。","authors":"Teng-Fei Xing, Yu-Long Li, Hao Yang, Deborah Charlesworth, Jin-Xian Liu","doi":"10.1093/molbev/msaf151","DOIUrl":null,"url":null,"abstract":"<p><p>Sex chromosome systems have evolved independently across the tree of life, at different times in the past, and the evolutionary consequences of lacking recombination in sex-linked regions have been characterized in many old-established systems. However, empirical studies of young sex chromosomes are still scarce, especially in vertebrates. Integrating whole-genome sequencing data of two species of halfbeak fish, Hyporhamphus sajori and H. intermedius, we identified the sex determining system in H. sajori as female heterogamety, involving a large fully sex-linked ZW region (∼26 Mb) on chromosome 5. The closest relative, H. intermedius, has a small sex-linked region on a different chromosome, and shows male heterogamety, suggesting at least one turnover in this fish genus. The H. sajori sex-linked region includes two evolutionary strata, but the estimated Z-W divergence times are small, less than 3 million years for the older stratum, which is less than between the two species. Nevertheless, this evolutionarily young W-linked region is enriched with repetitive sequences, differs from the ancestral state by five inversions, and about one-third of its protein-coding genes have already become non-functional. Transcriptomic analysis suggests that some form of dosage compensation may already be evolving for some sex-linked genes.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensive recombination suppression and genetic degeneration of a young ZW sex chromosome system in halfbeak fish.\",\"authors\":\"Teng-Fei Xing, Yu-Long Li, Hao Yang, Deborah Charlesworth, Jin-Xian Liu\",\"doi\":\"10.1093/molbev/msaf151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sex chromosome systems have evolved independently across the tree of life, at different times in the past, and the evolutionary consequences of lacking recombination in sex-linked regions have been characterized in many old-established systems. However, empirical studies of young sex chromosomes are still scarce, especially in vertebrates. Integrating whole-genome sequencing data of two species of halfbeak fish, Hyporhamphus sajori and H. intermedius, we identified the sex determining system in H. sajori as female heterogamety, involving a large fully sex-linked ZW region (∼26 Mb) on chromosome 5. The closest relative, H. intermedius, has a small sex-linked region on a different chromosome, and shows male heterogamety, suggesting at least one turnover in this fish genus. The H. sajori sex-linked region includes two evolutionary strata, but the estimated Z-W divergence times are small, less than 3 million years for the older stratum, which is less than between the two species. Nevertheless, this evolutionarily young W-linked region is enriched with repetitive sequences, differs from the ancestral state by five inversions, and about one-third of its protein-coding genes have already become non-functional. Transcriptomic analysis suggests that some form of dosage compensation may already be evolving for some sex-linked genes.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msaf151\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf151","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Extensive recombination suppression and genetic degeneration of a young ZW sex chromosome system in halfbeak fish.
Sex chromosome systems have evolved independently across the tree of life, at different times in the past, and the evolutionary consequences of lacking recombination in sex-linked regions have been characterized in many old-established systems. However, empirical studies of young sex chromosomes are still scarce, especially in vertebrates. Integrating whole-genome sequencing data of two species of halfbeak fish, Hyporhamphus sajori and H. intermedius, we identified the sex determining system in H. sajori as female heterogamety, involving a large fully sex-linked ZW region (∼26 Mb) on chromosome 5. The closest relative, H. intermedius, has a small sex-linked region on a different chromosome, and shows male heterogamety, suggesting at least one turnover in this fish genus. The H. sajori sex-linked region includes two evolutionary strata, but the estimated Z-W divergence times are small, less than 3 million years for the older stratum, which is less than between the two species. Nevertheless, this evolutionarily young W-linked region is enriched with repetitive sequences, differs from the ancestral state by five inversions, and about one-third of its protein-coding genes have already become non-functional. Transcriptomic analysis suggests that some form of dosage compensation may already be evolving for some sex-linked genes.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.