Marlena Tomczuk, Beata Godlewska-Żyłkiewicz, Andrzej Bajguz
{"title":"环境中的钆:植物生长和生态系统稳定的双刃剑。","authors":"Marlena Tomczuk, Beata Godlewska-Żyłkiewicz, Andrzej Bajguz","doi":"10.3390/metabo15060415","DOIUrl":null,"url":null,"abstract":"<p><p>Gadolinium, a rare earth element, is increasingly released into the environment due to its widespread applications in medical imaging, industry, and agriculture. This review explores the dual role of gadolinium in plant systems, highlighting its potential benefits at subtoxic concentrations and detrimental effects at higher levels. At subtoxic doses, gadolinium can enhance plant growth, metabolism, and stress tolerance by promoting enzymatic activity and nutrient absorption. However, elevated concentrations induce oxidative stress, disrupt nutrient uptake, and impair photosynthesis, leading to cellular damage and reduced growth. The bioaccumulation of gadolinium in plant tissues raises concerns about its trophic transfer within food chains and its broader ecological impact. Current evidence suggests that previously regarded as stable and inert gadolinium complexes can degrade under environmental conditions, increasing their bioavailability and toxicity. Despite its potential for agricultural applications, including improving crop resilience, the ecological risks associated with gadolinium remain poorly understood. Addressing these risks requires coordinated efforts to optimize gadolinium usage, develop advanced waste management strategies, and enhance monitoring of its environmental presence. This review emphasizes the need for in-depth research on gadolinium interactions with plants and ecosystems to balance its industrial benefits with environmental sustainability.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gadolinium in the Environment: A Double-Edged Sword for Plant Growth and Ecosystem Stability.\",\"authors\":\"Marlena Tomczuk, Beata Godlewska-Żyłkiewicz, Andrzej Bajguz\",\"doi\":\"10.3390/metabo15060415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gadolinium, a rare earth element, is increasingly released into the environment due to its widespread applications in medical imaging, industry, and agriculture. This review explores the dual role of gadolinium in plant systems, highlighting its potential benefits at subtoxic concentrations and detrimental effects at higher levels. At subtoxic doses, gadolinium can enhance plant growth, metabolism, and stress tolerance by promoting enzymatic activity and nutrient absorption. However, elevated concentrations induce oxidative stress, disrupt nutrient uptake, and impair photosynthesis, leading to cellular damage and reduced growth. The bioaccumulation of gadolinium in plant tissues raises concerns about its trophic transfer within food chains and its broader ecological impact. Current evidence suggests that previously regarded as stable and inert gadolinium complexes can degrade under environmental conditions, increasing their bioavailability and toxicity. Despite its potential for agricultural applications, including improving crop resilience, the ecological risks associated with gadolinium remain poorly understood. Addressing these risks requires coordinated efforts to optimize gadolinium usage, develop advanced waste management strategies, and enhance monitoring of its environmental presence. This review emphasizes the need for in-depth research on gadolinium interactions with plants and ecosystems to balance its industrial benefits with environmental sustainability.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15060415\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15060415","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gadolinium in the Environment: A Double-Edged Sword for Plant Growth and Ecosystem Stability.
Gadolinium, a rare earth element, is increasingly released into the environment due to its widespread applications in medical imaging, industry, and agriculture. This review explores the dual role of gadolinium in plant systems, highlighting its potential benefits at subtoxic concentrations and detrimental effects at higher levels. At subtoxic doses, gadolinium can enhance plant growth, metabolism, and stress tolerance by promoting enzymatic activity and nutrient absorption. However, elevated concentrations induce oxidative stress, disrupt nutrient uptake, and impair photosynthesis, leading to cellular damage and reduced growth. The bioaccumulation of gadolinium in plant tissues raises concerns about its trophic transfer within food chains and its broader ecological impact. Current evidence suggests that previously regarded as stable and inert gadolinium complexes can degrade under environmental conditions, increasing their bioavailability and toxicity. Despite its potential for agricultural applications, including improving crop resilience, the ecological risks associated with gadolinium remain poorly understood. Addressing these risks requires coordinated efforts to optimize gadolinium usage, develop advanced waste management strategies, and enhance monitoring of its environmental presence. This review emphasizes the need for in-depth research on gadolinium interactions with plants and ecosystems to balance its industrial benefits with environmental sustainability.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.