Maurizio Benucci, Edda Russo, Francesca Li Gobbi, Mariangela Manfredi, Maria Infantino
{"title":"炎性关节炎和环境:脊柱炎的原因和后果。","authors":"Maurizio Benucci, Edda Russo, Francesca Li Gobbi, Mariangela Manfredi, Maria Infantino","doi":"10.3390/jpm15060237","DOIUrl":null,"url":null,"abstract":"<p><p>The extensive research and studies conducted over the past decade have greatly improved our comprehension of the pathogenesis and risk factors associated with Spondyloarthritis (SpA). In addition, they have contributed to the advancement of novel therapeutic approaches. Although genetics still represents the primary risk factor for SpA, increasing evidence presented in this review suggests that environmental factors-such as air pollution, smoking, gut microbiota (GM), infections, and diet-also contribute to its pathogenesis. In detail, environmental particulate matters (PMs), which include ligands for the aryl hydrocarbon receptor-a cytosolic transcription factor responsive to toxic substances-facilitate the differentiation of T Helper 17 (Th17) cells, potentially exacerbating the autoinflammatory processes associated with SpA. Furthermore, smoking influences both the cellular and humoral aspects of the immune response, resulting in leukocytosis, impaired leukocyte functionality, and a decrease in various cytokines and soluble receptors, including interleukin (IL) 15, IL-1 receptor antagonist (IL-1Ra), IL-6, soluble IL-6 receptor (sIL-6R), as well as the vascular endothelial growth factor (VEGF) receptor. Studies have indicated that patients with SpA exhibit an increased prevalence of antibodies directed against a conserved epitope shared by the human leukocyte antigen B27 (HLA-B27)- and <i>Klebsiella nitrogenase</i>, in comparison to HLA-B27-positive controls. Additionally, current evidence regarding the GM suggests the presence of a gut-joint-skin axis, wherein the disruption of the mucosal barrier by specific bacterial species may enhance permeability to the gut-associated lymphoid tissue (GALT), resulting in localized inflammation mediated by Th1 and Th17 cells, as well as IL-17A. Finally, this review discusses the role of diet in shaping the microbial composition and its contribution to the pathogenesis of SpA. A comprehensive understanding of the mechanisms by which environmental factors influence the pathogenesis and progression of the disease could facilitate the development of novel personalized therapies targeting both external and internal environmental exposures, such as the gut microbial ecosystem.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inflammatory Arthritis and the Environment: Causes and Consequences of Spondyloarthritis.\",\"authors\":\"Maurizio Benucci, Edda Russo, Francesca Li Gobbi, Mariangela Manfredi, Maria Infantino\",\"doi\":\"10.3390/jpm15060237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extensive research and studies conducted over the past decade have greatly improved our comprehension of the pathogenesis and risk factors associated with Spondyloarthritis (SpA). In addition, they have contributed to the advancement of novel therapeutic approaches. Although genetics still represents the primary risk factor for SpA, increasing evidence presented in this review suggests that environmental factors-such as air pollution, smoking, gut microbiota (GM), infections, and diet-also contribute to its pathogenesis. In detail, environmental particulate matters (PMs), which include ligands for the aryl hydrocarbon receptor-a cytosolic transcription factor responsive to toxic substances-facilitate the differentiation of T Helper 17 (Th17) cells, potentially exacerbating the autoinflammatory processes associated with SpA. Furthermore, smoking influences both the cellular and humoral aspects of the immune response, resulting in leukocytosis, impaired leukocyte functionality, and a decrease in various cytokines and soluble receptors, including interleukin (IL) 15, IL-1 receptor antagonist (IL-1Ra), IL-6, soluble IL-6 receptor (sIL-6R), as well as the vascular endothelial growth factor (VEGF) receptor. Studies have indicated that patients with SpA exhibit an increased prevalence of antibodies directed against a conserved epitope shared by the human leukocyte antigen B27 (HLA-B27)- and <i>Klebsiella nitrogenase</i>, in comparison to HLA-B27-positive controls. Additionally, current evidence regarding the GM suggests the presence of a gut-joint-skin axis, wherein the disruption of the mucosal barrier by specific bacterial species may enhance permeability to the gut-associated lymphoid tissue (GALT), resulting in localized inflammation mediated by Th1 and Th17 cells, as well as IL-17A. Finally, this review discusses the role of diet in shaping the microbial composition and its contribution to the pathogenesis of SpA. A comprehensive understanding of the mechanisms by which environmental factors influence the pathogenesis and progression of the disease could facilitate the development of novel personalized therapies targeting both external and internal environmental exposures, such as the gut microbial ecosystem.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm15060237\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15060237","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Inflammatory Arthritis and the Environment: Causes and Consequences of Spondyloarthritis.
The extensive research and studies conducted over the past decade have greatly improved our comprehension of the pathogenesis and risk factors associated with Spondyloarthritis (SpA). In addition, they have contributed to the advancement of novel therapeutic approaches. Although genetics still represents the primary risk factor for SpA, increasing evidence presented in this review suggests that environmental factors-such as air pollution, smoking, gut microbiota (GM), infections, and diet-also contribute to its pathogenesis. In detail, environmental particulate matters (PMs), which include ligands for the aryl hydrocarbon receptor-a cytosolic transcription factor responsive to toxic substances-facilitate the differentiation of T Helper 17 (Th17) cells, potentially exacerbating the autoinflammatory processes associated with SpA. Furthermore, smoking influences both the cellular and humoral aspects of the immune response, resulting in leukocytosis, impaired leukocyte functionality, and a decrease in various cytokines and soluble receptors, including interleukin (IL) 15, IL-1 receptor antagonist (IL-1Ra), IL-6, soluble IL-6 receptor (sIL-6R), as well as the vascular endothelial growth factor (VEGF) receptor. Studies have indicated that patients with SpA exhibit an increased prevalence of antibodies directed against a conserved epitope shared by the human leukocyte antigen B27 (HLA-B27)- and Klebsiella nitrogenase, in comparison to HLA-B27-positive controls. Additionally, current evidence regarding the GM suggests the presence of a gut-joint-skin axis, wherein the disruption of the mucosal barrier by specific bacterial species may enhance permeability to the gut-associated lymphoid tissue (GALT), resulting in localized inflammation mediated by Th1 and Th17 cells, as well as IL-17A. Finally, this review discusses the role of diet in shaping the microbial composition and its contribution to the pathogenesis of SpA. A comprehensive understanding of the mechanisms by which environmental factors influence the pathogenesis and progression of the disease could facilitate the development of novel personalized therapies targeting both external and internal environmental exposures, such as the gut microbial ecosystem.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.