Mariona Segura-Noguera, Zuoxi Ruan, Mario Giordano
{"title":"硫酸盐有效性对浮游植物化学计量学的影响。","authors":"Mariona Segura-Noguera, Zuoxi Ruan, Mario Giordano","doi":"10.1111/jpy.70053","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfur (S) is a key element in multiple metabolic pathways of phytoplankton cells. The effect of S availability on phytoplankton elemental quotas and stoichiometry has been addressed in few studies, using a limited number of species and with contradictory results. Using high-temperature combustion oxidation and X-ray fluorescence methods, we measured the concentrations of micro- and trace elements in monocultures of 20 marine phytoplankton species, grown with different sulfate concentrations representing those of early and modern oceans. We found that, independently from the sulfate concentration in the media, the red lineage species had higher S quotas than those of the green lineage, resulting in lower C:S (93) and higher S:P (1.06) than the green lineage species (226 and 0.76, respectively). This suggests a genetic constraint in the S quota and aligns with the sulfate facilitation hypothesis, shedding light on a metabolic basis for the expansion of the red lineage algae and their current dominance in ocean waters. We also have shown a physiological response of phytoplankton cells to different sulfate availability, by either decreasing phosphorus or increasing zinc quotas. The P response was more characteristic in the red lineage, with higher S requirements and metabolic S fluxes, while the Zn response was independent of genotypic constraints or plastid type.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of sulfate availability on phytoplankton stoichiometry.\",\"authors\":\"Mariona Segura-Noguera, Zuoxi Ruan, Mario Giordano\",\"doi\":\"10.1111/jpy.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulfur (S) is a key element in multiple metabolic pathways of phytoplankton cells. The effect of S availability on phytoplankton elemental quotas and stoichiometry has been addressed in few studies, using a limited number of species and with contradictory results. Using high-temperature combustion oxidation and X-ray fluorescence methods, we measured the concentrations of micro- and trace elements in monocultures of 20 marine phytoplankton species, grown with different sulfate concentrations representing those of early and modern oceans. We found that, independently from the sulfate concentration in the media, the red lineage species had higher S quotas than those of the green lineage, resulting in lower C:S (93) and higher S:P (1.06) than the green lineage species (226 and 0.76, respectively). This suggests a genetic constraint in the S quota and aligns with the sulfate facilitation hypothesis, shedding light on a metabolic basis for the expansion of the red lineage algae and their current dominance in ocean waters. We also have shown a physiological response of phytoplankton cells to different sulfate availability, by either decreasing phosphorus or increasing zinc quotas. The P response was more characteristic in the red lineage, with higher S requirements and metabolic S fluxes, while the Zn response was independent of genotypic constraints or plastid type.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jpy.70053\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.70053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Effect of sulfate availability on phytoplankton stoichiometry.
Sulfur (S) is a key element in multiple metabolic pathways of phytoplankton cells. The effect of S availability on phytoplankton elemental quotas and stoichiometry has been addressed in few studies, using a limited number of species and with contradictory results. Using high-temperature combustion oxidation and X-ray fluorescence methods, we measured the concentrations of micro- and trace elements in monocultures of 20 marine phytoplankton species, grown with different sulfate concentrations representing those of early and modern oceans. We found that, independently from the sulfate concentration in the media, the red lineage species had higher S quotas than those of the green lineage, resulting in lower C:S (93) and higher S:P (1.06) than the green lineage species (226 and 0.76, respectively). This suggests a genetic constraint in the S quota and aligns with the sulfate facilitation hypothesis, shedding light on a metabolic basis for the expansion of the red lineage algae and their current dominance in ocean waters. We also have shown a physiological response of phytoplankton cells to different sulfate availability, by either decreasing phosphorus or increasing zinc quotas. The P response was more characteristic in the red lineage, with higher S requirements and metabolic S fluxes, while the Zn response was independent of genotypic constraints or plastid type.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.