Enrico Rosa, Sofia Raponi, Bruno Fionda, Maria Vaccaro, Valentina Lancellotta, Antonio Napolitano, Gabriele Ciasca, Leonardo Bannoni, Patrizia Cornacchione, Luca Tagliaferri, Marco De Spirito, Elisa Placidi
{"title":"3d打印设备在介入放疗(近距离治疗)中的应用:文献综述。","authors":"Enrico Rosa, Sofia Raponi, Bruno Fionda, Maria Vaccaro, Valentina Lancellotta, Antonio Napolitano, Gabriele Ciasca, Leonardo Bannoni, Patrizia Cornacchione, Luca Tagliaferri, Marco De Spirito, Elisa Placidi","doi":"10.3390/jpm15060262","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction</b>: Interventional radiotherapy (brachytherapy, IRT, BT) has evolved with technological advancements, improving dose precision while minimizing exposure to healthy tissues. The integration of 3D-printing technology in IRT has enabled the development of patient-specific devices, optimizing treatment personalization and dosimetric accuracy. <b>Methods</b>: A systematic literature search was conducted in PubMed, Scopus, and Google Scholar to identify studies published between 2020 and 2024 on 3D-printing applications in IRT. The selection process resulted in 74 peer-reviewed articles categorized by radioactive source, brachytherapy technique, endpoint of the 3D-printed product, and study type. <b>Results</b>: The analysis highlights the growing implementation of 3D-printed devices in brachytherapy, particularly in gynecological, prostate, and skin cancers. Most studies focus on technique, including intracavitary, interstitial, and contact applications, with custom applicators and templates emerging as predominant endpoints. The majority of studies involved in vivo clinical applications, followed by in silico computational modeling and in vitro experiments. <b>Conclusions</b>: The upward trend in scientific publications underscores the growing attention on 3D printing for enhancing personalized brachytherapy. The increasing use of 3D-printed templates and applicators highlights their role in optimizing dose delivery and expanding personalized treatment strategies. The current research trend is shifting toward real-world data and in vivo studies to assess clinical applications, ensuring these innovations translate effectively into routine practice. The integration of 3D printing represents a major advancement in radiation oncology, with the potential to enhance treatment efficacy and patient outcomes. Future research should focus on standardizing manufacturing processes and expanding clinical validation to facilitate broader adoption.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193783/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D-Printed Devices in Interventional Radiotherapy (Brachytherapy) Applications: A Literature Review.\",\"authors\":\"Enrico Rosa, Sofia Raponi, Bruno Fionda, Maria Vaccaro, Valentina Lancellotta, Antonio Napolitano, Gabriele Ciasca, Leonardo Bannoni, Patrizia Cornacchione, Luca Tagliaferri, Marco De Spirito, Elisa Placidi\",\"doi\":\"10.3390/jpm15060262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction</b>: Interventional radiotherapy (brachytherapy, IRT, BT) has evolved with technological advancements, improving dose precision while minimizing exposure to healthy tissues. The integration of 3D-printing technology in IRT has enabled the development of patient-specific devices, optimizing treatment personalization and dosimetric accuracy. <b>Methods</b>: A systematic literature search was conducted in PubMed, Scopus, and Google Scholar to identify studies published between 2020 and 2024 on 3D-printing applications in IRT. The selection process resulted in 74 peer-reviewed articles categorized by radioactive source, brachytherapy technique, endpoint of the 3D-printed product, and study type. <b>Results</b>: The analysis highlights the growing implementation of 3D-printed devices in brachytherapy, particularly in gynecological, prostate, and skin cancers. Most studies focus on technique, including intracavitary, interstitial, and contact applications, with custom applicators and templates emerging as predominant endpoints. The majority of studies involved in vivo clinical applications, followed by in silico computational modeling and in vitro experiments. <b>Conclusions</b>: The upward trend in scientific publications underscores the growing attention on 3D printing for enhancing personalized brachytherapy. The increasing use of 3D-printed templates and applicators highlights their role in optimizing dose delivery and expanding personalized treatment strategies. The current research trend is shifting toward real-world data and in vivo studies to assess clinical applications, ensuring these innovations translate effectively into routine practice. The integration of 3D printing represents a major advancement in radiation oncology, with the potential to enhance treatment efficacy and patient outcomes. Future research should focus on standardizing manufacturing processes and expanding clinical validation to facilitate broader adoption.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193783/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm15060262\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15060262","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
3D-Printed Devices in Interventional Radiotherapy (Brachytherapy) Applications: A Literature Review.
Introduction: Interventional radiotherapy (brachytherapy, IRT, BT) has evolved with technological advancements, improving dose precision while minimizing exposure to healthy tissues. The integration of 3D-printing technology in IRT has enabled the development of patient-specific devices, optimizing treatment personalization and dosimetric accuracy. Methods: A systematic literature search was conducted in PubMed, Scopus, and Google Scholar to identify studies published between 2020 and 2024 on 3D-printing applications in IRT. The selection process resulted in 74 peer-reviewed articles categorized by radioactive source, brachytherapy technique, endpoint of the 3D-printed product, and study type. Results: The analysis highlights the growing implementation of 3D-printed devices in brachytherapy, particularly in gynecological, prostate, and skin cancers. Most studies focus on technique, including intracavitary, interstitial, and contact applications, with custom applicators and templates emerging as predominant endpoints. The majority of studies involved in vivo clinical applications, followed by in silico computational modeling and in vitro experiments. Conclusions: The upward trend in scientific publications underscores the growing attention on 3D printing for enhancing personalized brachytherapy. The increasing use of 3D-printed templates and applicators highlights their role in optimizing dose delivery and expanding personalized treatment strategies. The current research trend is shifting toward real-world data and in vivo studies to assess clinical applications, ensuring these innovations translate effectively into routine practice. The integration of 3D printing represents a major advancement in radiation oncology, with the potential to enhance treatment efficacy and patient outcomes. Future research should focus on standardizing manufacturing processes and expanding clinical validation to facilitate broader adoption.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.